Paul G Greenwood

Learn More
Some nudibranchs that feed on cnidarians are known to store nematocysts within cnidophage cells and use them for their own defense. Most of the nematocysts are in direct contact with the cytoplasm of the cnidophage. Nematocysts are not subjected to lysosomal enzymes because any phagocytic membrane that surrounded the nematocyst after engulfment does not(More)
Nudibranchs that feed on cnidarians must defend themselves from the prey's nematocysts or risk their own injury or death. While a nudibranch's mucus has been thought to protect the animal from nematocyst discharge, an inhibition of discharge by nudibranch mucus has never been shown. The current study investigated whether mucus from the aeolid nudibranch(More)
Although toxic, physically destructive, and produced solely by cnidarians, nematocysts are acquired, stored, and used by some predators of cnidarians. Despite knowledge of this phenomenon for well over a century, little empirical evidence details the mechanisms of how (and even why) these organisms use organelles of cnidarians. However, in the past 20 years(More)
Nematocysts were isolated from individuals of Calliactis tricolor maintained under different feeding schedules or in different salinities in an attempt to determine how these culture conditions influence the discharge of isolated nematocysts. In addition, the discharge frequencies of nematocysts isolated from two different populations of sea anemones found(More)
The bifunctional alkylating agents diepoxybutane (DEB) and epichlorohydrin (ECH) are linked to the elevated incidence of certain cancers among workers in the synthetic polymer industry. Both compounds form interstrand cross-links within duplex DNA, an activity suggested to contribute to their cytotoxicity. To assess the DNA targeting of these compounds in(More)
  • 1