Paul E. Gessler

Learn More
We describe and evaluate a new analysis technique, spatial wavelet analysis (SWA), to automatically estimate the location, height, and crown diameter of individual trees within mixed conifer open canopy stands from light detection and ranging (lidar) data. Two-dimensional Mexican hat wavelets, over a range of likely tree crown diameters, were convolved with(More)
We compared the utility of discrete-return light detection and ranging (lidar) data and multispectral satellite imagery, and their integration, for modeling and mapping basal area and tree density across two diverse coniferous forest landscapes in north-central Idaho. We applied multiple linear regression models subset from a suite of 26 predictor variables(More)
A robust method for spatial prediction of landslide hazard in roaded and roadless areas of forest is described. The method is based on assigning digital terrain attributes into continuous landform classes. The continuous landform classification is achieved by applying a fuzzy k-means approach to a watershed scale area before the classification is(More)
Mapping of landslide susceptibility in forested watersheds is important for management decisions. In forested watersheds, especially in mountainous areas, the spatial distribution of relevant parameters for landslide prediction is often unavailable. This paper presents a GIS-based modeling approach that includes representation of the uncertainty and(More)
Land managers need cost-effective methods for mapping and characterizing forest fuels quickly and accurately. The launch of satellite sensors with increased spatial resolution may improve the accuracy and reduce the cost of fuels mapping. The objective of this research is to evaluate the accuracy and utility of imagery from the advanced spaceborne thermal(More)
An empirical modeling of road related and non-road related landslide hazard for a large geographical area using logistic regression in tandem with signal detection theory is presented. This modeling was developed using geographic information system (GIS) and remote sensing data, and was implemented on the Clearwater National Forest in central Idaho. The(More)
Leaf area index (LAI) is an important forest characteristic related to photosynthesis and carbon sequestration, and gains in efficiency for LAI measurements are possible using remotely sensed imagery. However, the potential effects of complex topography on this measurement system are not well understood. Our objective was to understand how complex terrain(More)
Sustainable forest management requires timely, detailed forest inventory data across large areas, which is difficult to obtain via traditional forest inventory techniques. This study evaluated k-nearest neighbor imputation models incorporating LiDAR data to predict tree-level inventory data (individual tree height, diameter at breast height, and species)(More)