Learn More
Four soil temperature and moisture treatment regimens were imposed on Florunner peanuts 94 days after planting in experimental plots in 1980. At harvest (145 days after planting), the incidence of the Aspergillus flavus group and the aflatoxin concentration were greatest in damaged kernels. Extensive colonization of sound mature kernels (SMK) by the A.(More)
Samples of Florunner peanuts were collected throughout a period of late-season drought stress with mean geocarposphere temperatures of 29 and 25 °C, and determinations of maturity, kernel water activity (aw), percent moisture, capacity for phytoalexin production, and aflatoxin contamination were made. Results showed an association between the loss of the(More)
Environmental control plots adjusted to late season drought and elevated soil temperatures where inoculated at peanut planting with low and high levels of conidia, sclerotia, and mycelium from a brown conidial mutant ofAspergillus parasiticus. Percentage infection of peanut seeds from undamaged pods was greatest for the subplot containing the high(More)
The use of nontoxigenic strains of Aspergillus flavus and A. parasiticus in biological control effectively reduces aflatoxin in peanuts when conidium-producing inoculum is applied to the soil surface. In this study, the movement of conidia in soil was examined following natural rainfall and controlled precipitation from a sprinkler irrigation system.(More)
Florunner peanuts grown in research plots were subjected to 5 soil temperature and moisture treatment regimes resulting in A. flavus infestation and subsequent aflatoxin contamination in drought-stressed peanuts. Treatments imposed beginning 85 days after planting were drought, drought with heated soil and 3 drought treatments with cooled soil. The(More)
A comparison of the invasion of flowers, aerial pegs, and kernels by wild-type and mutant strains of Aspergillus flavus or A. parasiticus along with aflatoxin analyses of kernels from different drought treatments have supported the hypothesis that preharvest contamination with aflatoxin originates mainly from the soil. Evidence in support of soil invasion(More)
Apparently undamaged peanuts grown under environmental stress in the form of drought and heat become contaminated with Aspergillus flavus and aflatoxin in the soil prior to harvest. The upper mean temperature limit for aflatoxin contamination in undamaged peanut kernels grown under drought stress the latter 4–6 weeks of the growing season was between(More)
Peanut stem and pod temperatures of plants growing in irrigated, drought, drought-heated soil, and drought-cooled soil treatments were determined near the end of the growing season. Mean soil temperatures of the treatments during this period were 21.5°, 25.5°, 30° and 20 °C, respectively. Peanut stem temperatures in all drought treatments reached a maximum(More)
A study was conducted to measure the precision of 2 rapid aflatoxin assay systems in use at 37 peanut buying points during the 1991 harvest season. Aflatoxin laboratories were established at the 37 buying points to analyze peanut samples from all incoming farmers' stock loads as part of a joint project sponsored by various segments of the U.S. peanut(More)
  • 1