Learn More
Studying membrane proteins represents a major challenge in protein biochemistry, with one of the major difficulties being the problems encountered when working outside the natural lipid environment. In vitro studies such as crystallization are reliant on the successful solubilization or reconstitution of membrane proteins, which generally involves the(More)
Investigations into protein folding have concentrated on experimentally tractable proteins with the result that membrane protein folding remains unsolved. New evidence is providing insight into the nature of the interactions stabilising the folded state of alpha-helical membrane proteins as well as giving hints on the character of the folding transition(More)
BACKGROUND Membrane proteins are influenced by their surrounding lipids. We investigate the effect of bilayer composition on the membrane transport activity of two members of the small multidrug resistance family; the Escherichia coli transporter, EmrE and the Mycobacterium tuberculosis, TBsmr. In particular we address the influence of(More)
Fatty acid ethyl esters are secondary metabolites that are produced during microbial fermentation, in fruiting plants and in higher organisms during ethanol stress. In particular, volatile medium-chain fatty acid ethyl esters are important flavour compounds that impart desirable fruit aromas to fermented beverages, including beer and wine. The biochemical(More)
General rights This document is made available in accordance with publisher policies. Please cite only the published version using the reference above. Full terms of use are available: Explore Bristol Research is a digital archive and the intention is that deposited content should not be removed. However, if you believe that this version of the work(More)
Diatoms are an important group of eukaryotic algae with a curious evolutionary innovation: they sheath themselves in a cell wall made largely of silica. The cellular machinery responsible for silicification includes a family of membrane permeases that recognize and actively transport the soluble precursor of biosilica, silicic acid. However, the molecular(More)
The aromatic acid:H(+) symporter family of integral membrane proteins play an important role in the microbial metabolism of aromatic compounds. Here, we show that the 4-hydroxybenzoate transporter from Acinetobacter sp. ADP1, PcaK, can be successfully overexpressed in Escherichia coli and purified by affinity chromatography. Affinity-purified PcaK is a(More)
CSIRO advises that the information contained in this publication comprises general statements based on scientific research. The reader is advised and needs to be aware that such information may be incomplete or unable to be used in any specific situation. No reliance or actions must therefore be made on that information without seeking prior expert(More)
  • 1