Learn More
The trapping of decarboxylation products of radiolabelled dopa analogs in living human brain occurs as a function of the activity of dopa decarboxylase. This enzyme is now understood to regulate, with tyrosine hydroxylase, cerebral dopamine synthesis. Influx into brain of dopa decarboxylase substrates such as 6-[18F]fluorodopa and beta-[11C]dopa measured by(More)
The use of pigs in neuroscience research has increased in the past decade, which has seen broader recognition of the potential of pigs as an animal for experimental modeling of human brain disorders. The volume of available background data concerning pig brain anatomy and neurochemistry has increased considerably in recent years. The pig brain, which is(More)
Sensation seeking is a core personality trait that declines with age in both men and women, as do also both density and availability of the dopamine D(2/3) receptors in striatum and cortical regions. In contrast, novelty seeking at a given age relates inversely to dopamine receptor availability. The simplest explanation of these findings is an(More)
Thedomestic pig is increasingly being used as an experimental model for brain imaging studies with positron emission tomography (PET). The recording of radiotracer uptake by PET gives functional and physiological information, but with poor spatial resolution. To date, anatomical regions of interest in pig brain have been defined in MR images obtained for(More)
Like native DOPA, [18F]-6-fluoro-L-3,4-dihydroxyphenylalanine ([18F]FDOPA) is subject to methylation and decarboxylation. To determine the rates of formation and elimination of [18F]FDOPA metabolites, plasma from human subjects undergoing positron emission tomographic (PET) studies was analyzed by high-performance liquid chromatography (HPLC). In addition(More)
Abnormal central dopamine (DA) neurotransmission has been implicated in the impulsivity, inattention, and hyperactivity of attention deficit hyperactivity disorder (ADHD). We hypothesized that a pharmacological challenge with methylphenidate (MP) at a therapeutic dose increases extracellular DA concentrations in proportion to the severity of these specific(More)
Previous positron emission tomography (PET) studies with levodopa analogs have revealed a modestly increased capacity for dopamine synthesis in the striatum of patients with schizophrenia compared with healthy age-matched control subjects. We hypothesized that not just the synthesis but also the turnover of radiolabeled dopamine is elevated in patients. To(More)
Molecular and functional imaging techniques reveal evidence for lateralization of human cerebral function. Based on animal data, we hypothesized that asymmetry in dopamine neurotransmission declines during normal aging. In order to test this hypothesis, we measured dopamine D2/3 receptor availability with [18F]desmethoxyfallypride-PET (DMFP) in putamen and(More)
Dopamine neurotransmission influences those cognitive processes, which are generally regarded as prefrontal cortical functions. In previous positron-emission-tomography (PET) studies, net blood-brain clearance of [18F]-fluoro-l-DOPA (FDOPA) correlated with impaired cognitive performance in patients with Parkinson's disease or schizophrenia. We hypothesized(More)
The availability of dopamine D(2/3) binding sites in brain of six male and six female Göttingen minipigs was measured in a baseline condition and after challenge with amphetamine sulfate (1mg/kg, i.v.) in PET studies with [(11)C]raclopride. Maps of the binding potential (pB; B(max)/K(d)) of [(11)C]raclopride were spatially normalized and co-registered to a(More)