Learn More
The trapping of decarboxylation products of radiolabelled dopa analogs in living human brain occurs as a function of the activity of dopa decarboxylase. This enzyme is now understood to regulate, with tyrosine hydroxylase, cerebral dopamine synthesis. Influx into brain of dopa decarboxylase substrates such as 6-[18F]fluorodopa and beta-[11C]dopa measured by(More)
Sensation seeking is a core personality trait that declines with age in both men and women, as do also both density and availability of the dopamine D(2/3) receptors in striatum and cortical regions. In contrast, novelty seeking at a given age relates inversely to dopamine receptor availability. The simplest explanation of these findings is an(More)
The use of pigs in neuroscience research has increased in the past decade, which has seen broader recognition of the potential of pigs as an animal for experimental modeling of human brain disorders. The volume of available background data concerning pig brain anatomy and neurochemistry has increased considerably in recent years. The pig brain, which is(More)
Abnormal central dopamine (DA) neurotransmission has been implicated in the impulsivity, inattention, and hyperactivity of attention deficit hyperactivity disorder (ADHD). We hypothesized that a pharmacological challenge with methylphenidate (MP) at a therapeutic dose increases extracellular DA concentrations in proportion to the severity of these specific(More)
Previous positron emission tomography (PET) studies with levodopa analogs have revealed a modestly increased capacity for dopamine synthesis in the striatum of patients with schizophrenia compared with healthy age-matched control subjects. We hypothesized that not just the synthesis but also the turnover of radiolabeled dopamine is elevated in patients. To(More)
Molecular and functional imaging techniques reveal evidence for lateralization of human cerebral function. Based on animal data, we hypothesized that asymmetry in dopamine neurotransmission declines during normal aging. In order to test this hypothesis, we measured dopamine D2/3 receptor availability with [18F]desmethoxyfallypride-PET (DMFP) in putamen and(More)
Dopamine neurotransmission influences those cognitive processes, which are generally regarded as prefrontal cortical functions. In previous positron-emission-tomography (PET) studies, net blood-brain clearance of [18F]-fluoro-l-DOPA (FDOPA) correlated with impaired cognitive performance in patients with Parkinson's disease or schizophrenia. We hypothesized(More)
According to the ternary complex model of G-protein linkage to receptors, agonists increase the affinity of the receptors for the G protein. The model predicts that an endogenous agonist's constant of inhibition toward an agonist radioligand is lower than that toward an antagonistic radioligand. The authors hypothesized that competition from endogenous(More)
Previous ex vivo studies have provided indirect evidence that the dopamine (DA) metabolite 3-methoxytyramine (3-MT) may be a useful index of DA release in vivo. In the present study, in vivo microdialysis was utilized to assess directly the relationship between extracellular DA and 3-MT in the striatum of rats following a variety of pharmacological(More)
The decarboxylation of 6-[(18)F]fluorodopa (FDOPA) and retention of the product [(18)F]fluorodopamine within vesicles of catecholamine fibers results in the labeling of dopamine-rich brain regions during FDOPA/PET studies. However, this metabolic trapping is not irreversible due to the eventual diffusion of [(18)F]fluorodopamine metabolites from brain.(More)