Learn More
The main interconnect of the massively parallel Blue Genet/L is a three-dimensional torus network with dynamic virtual cut-through routing. This paper describes both the architecture and the microarchitecture of the torus and a network performance simulator. Both simulation results and hardware measurements are presented.
We present here a report produced by a workshop on 'Addressing failures in exascale computing' held in Park City, Utah, 4–11 August 2012. The charter of this workshop was to establish a common taxonomy about resilience across all the levels in a computing system, discuss existing knowledge on resilience across the various hardware and software layers of an(More)
An eightfold improvement in power efficiency can be achieved without loss of performance for modestly parallelizable CMOS-based computer systems. ABSTRACT | After decades of continuous scaling, further advancement of silicon microelectronics across the entire spectrum of computing applications is today limited by power dissipation. While the trade-off(More)
This paper gives an overview of the BlueGene/L Supercomputer. This is a jointly funded research partnership between IBM and the Lawrence Livermore National Laboratory as part of the United States Department of Energy ASCI Advanced Architecture Research Program. Application performance and scaling studies have recently been initiated with partners at a(More)
The BlueGene/L supercomputer has been designed with a focus on power/performance efficiency to achieve high application performance under the thermal constraints of common data centers. To achieve this goal, emphasis was put on system solutions to engineer a power-efficient system. To exploit thread level parallelism, the BlueGene/L system can scale to 64(More)
In December 1999, IBM announced the start of a five-year effort to build a massively parallel computer, to be applied to the study of biomolecular phenomena such as protein folding. The project has two main goals: to advance our understanding of the mechanisms behind protein folding via large-scale simulation, and to explore novel ideas in massively(More)
The Blue Genet/L computer is a massively parallel supercomputer based on IBM system-on-a-chip technology. It is designed to scale to 65,536 dual-processor nodes, with a peak performance of 360 teraflops. This paper describes the project objectives and provides an overview of the system architecture that resulted. We discuss our application-based approach(More)
As 1999 ended, IBM announced its intention to construct a one-petaflop supercomputer. The construction of this system was based on a cellular architecture—the use of relatively small but powerful building blocks used together in sufficient quantities to construct large systems. The first step on the road to a petaflop machine (one quadrillion floating-point(More)
To satisfy the economic drive for ever more powerful computers to handle scientific and business applications, new technologies are needed to overcome the limitations of current approaches. New memory technologies will address the need for greater amounts of data in close proximity to the processors. Three-dimensional silicon integration will allow more(More)