Paul Chastain

Learn More
The Saccharomyces cerevisiae origin recognition complex (ORC) is composed of six subunits and is an essential component in the assembly of the replication apparatus. To probe the organization of this multiprotein complex by electron microscopy, each subunit was tagged on either its C or N terminus with biotin and assembled into a complex with the five other(More)
BACKGROUND The GINS complex is thought to be essential for the processes of initiation and elongation of DNA replication. This complex contains four subunits, one of which (Psf1) is proposed to bind to both chromatin and DNA replication-associated proteins. To date there have been no microscopic analyses to evaluate the chromatin distribution of this(More)
For DNA replication to occur, chromatin must be remodeled. Yet, we know very little about which proteins alter nucleosome occupancy at origins and replication forks and for what aspects of replication they are required. Here, we demonstrate that the BRG1 catalytic subunit of mammalian SWI/SNF-related complexes co-localizes with origin recognition complexes,(More)
A major challenge each human cell-division cycle is to ensure that DNA replication origins do not initiate more than once, a phenomenon known as re-replication. Acute deregulation of replication control ultimately causes extensive DNA damage, cell-cycle checkpoint activation and cell death whereas moderate deregulation promotes genome instability and(More)
SWI/SNF complexes utilize BRG1 (also known as SMARCA4) or BRM (also known as SMARCA2) as alternative catalytic subunits with ATPase activity to remodel chromatin. These chromatin-remodeling complexes are required for mammalian development and are mutated in ~20% of all human primary tumors. Yet our knowledge of their tumor-suppressor mechanism is limited.(More)
Poly(ADP-ribose) polymerase-1 (PARP-1) is an abundant nuclear enzyme in mammalian cells. The enzyme synthesizes polymers of ADP-ribose from the coenzyme NAD(+) and plays multifaceted roles in cellular responses to genotoxic stress, including DNA repair. It had been shown that mouse fibroblasts treated with a DNA methylating agent in combination with a PARP(More)
The rapid assessment of how cells respond to pathologic, biological, environmental, and endogenous agents is critical for understanding how such responses may increase genomic instability, disease development and, ultimately, affect quality of life. Recently, we have applied the technique of DNA fiber analysis to increase our understanding of how DNA(More)
We investigated the hypothesis that the strength of the activation of the intra-S DNA damage checkpoint varies within the S phase. Synchronized diploid human fibroblasts were exposed to either 0 or 2.5 J m(-2) UVC in early, mid- and late-S phase. The endpoints measured were the following: (1) radio-resistant DNA synthesis (RDS), (2) induction of Chk1(More)
  • 1