Paul C. Redfern

Learn More
A set of 148 molecules having well-established enthalpies of formation at 298 K is presented. This set, referred to as the G2 neutral test set, includes the 55 molecules whose atomization energies were used to test Gaussian-2 ~G2! theory @J. Chem. Phys. 94, 7221 ~1991!# and 93 new molecules. The G2 test set includes 29 radicals, 35 nonhydrogen systems, 22(More)
The thermochemistry of the conversion of glucose to levulinic acid through fructofuranosyl intermediates is investigated using the high-level ab initio methods G4 and G4MP2. The calculated gas phase reaction enthalpies indicate that the first two steps involving water molecule elimination are highly endothermic, while the other steps, including additional(More)
The G3/99 test set [L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople, J. Chem. Phys. 112, 7374 (2000)] of thermochemical data for validation of quantum chemical methods is expanded to include 78 additional energies including 14 enthalpies of formation of the first- and second-row nonhydrogen molecules, 58 energies of molecules containing the(More)
Production of the industrial chemical propylene oxide is energy-intensive and environmentally unfriendly. Catalysts based on bulk silver surfaces with direct propylene epoxidation by molecular oxygen have not resolved these problems because of substantial formation of carbon dioxide. We found that unpromoted, size-selected Ag3 clusters and approximately(More)
Small clusters are known to possess reactivity not observed in their bulk analogues, which can make them attractive for catalysis. Their distinct catalytic properties are often hypothesized to result from the large fraction of under-coordinated surface atoms. Here, we show that size-preselected Pt(8-10) clusters stabilized on high-surface-area supports are(More)
Raman spectroscopy is used to characterize the composition of toroids formed in an aprotic Li-O2 cell based on an activated carbon cathode. The trends in the Raman data as a function of discharge current density and charging cutoff voltage provide evidence that the toroids are made up of outer LiO2-like and inner Li2O2 regions, consistent with a(More)
We report calculations using a previously reported model of lithium perchlorate in polyethylene oxide in order to understand the mechanism of lithium transport in these systems. Using an algorithm suggested by Voter, we find results for the diffusion rate which are quite close to experimental values. By analysis of the individual events in which large(More)
Lithium-oxygen batteries have the potential needed for long-range electric vehicles, but the charge and discharge chemistries are complex and not well understood. The active sites on cathode surfaces and their role in electrochemical reactions in aprotic lithium-oxygen cells are difficult to ascertain because the exact nature of the sites is unknown. Here(More)
An atomistically informed mesoscale model is developed for the deposition of a discharge product in a Li-O2 battery. This mescocale model includes particle growth and coarsening as well as a simplified nucleation model. The model involves LiO2 formation through reaction of O2(-) and Li(+) in the electrolyte, which deposits on the cathode surface when the(More)