Paul C . Evans

Learn More
Ubiquitination regulates the stability and/or activity of numerous cellular proteins. The corollary is that de-ubiquitinating enzymes, which 'trim' polyubiquitin chains from specific substrate proteins, play key roles in controlling fundamental cellular activities. Ubiquitin is essential at several stages during the activation of NF-kappaB (nuclear factor(More)
The mechanisms by which physical forces regulate endothelial cells to determine the complexities of vascular structure and function are enigmatic. Studies of sensory neurons have suggested Piezo proteins as subunits of Ca(2+)-permeable non-selective cationic channels for detection of noxious mechanical impact. Here we show Piezo1 (Fam38a) channels as(More)
Atherosclerosis is a chronic inflammatory disease of arteries that develops preferentially at branches and bends that are exposed to disturbed blood flow. Vascular function is modified by flow, in part, via the generation of mechanical forces that alter multiple physiological processes in endothelial cells. Shear stress has profound effects on vascular(More)
Transcription factors belonging to the NF-kappaB family regulate inflammation by inducing pro-inflammatory molecules (e.g. interleukin (IL)-8) in response to cytokines (e.g. tumor necrosis factor (TNF) alpha, IL-1) or other stimuli. Several negative regulators of NF-kappaB, including the ubiquitin-editing enzyme A20, participate in the resolution of(More)
OBJECTIVE Proinflammatory mediators influence atherosclerosis by inducing adhesion molecules (eg, VCAM-1) on endothelial cells (ECs) via signaling intermediaries including p38 MAP kinase. Regions of arteries exposed to high shear stress are protected from inflammation and atherosclerosis, whereas low-shear regions are susceptible. Here we investigated(More)
A previous report from this laboratory described two novel proteins that have sequence similarity to A20, a negative regulator of NF-kappaB (Evans, P. C., Taylor, E. R., Coadwell, J., Heyninck, K., Beyaert, R., and Kilshaw, P. J. (2001) Biochem. J. 357, 617-623). One of these molecules, cellular zinc finger anti-NF-kappaB (Cezanne), a 100-kDa cytoplasmic(More)
Although nonsteroidal anti-inflammatory drugs (NSAIDs) provide important control of pain and inflammation, they have been overshadowed by concerns regarding atherothrombotic complications. However, celecoxib seems to have a relatively good cardiovascular profile and may improve endothelial function in coronary heart disease. This led us to the hypothesis(More)
Accumulation of damaged proteins is causally related to many age-related diseases. The ubiquitin-proteasome pathway (UPP) plays a role in selective degradation of damaged proteins, whereas molecular chaperones, such as heat shock proteins, are involved in refolding denatured proteins. This work demonstrates for the first time that the UPP and molecular(More)
In addition to cholesterol-lowering properties, statins exhibit lipid-independent immunomodulatory, anti-inflammatory actions. However, high concentrations are typically required to induce these effects in vitro, raising questions concerning therapeutic relevance. We present evidence that endothelial cell sensitivity to statins depends upon shear stress.(More)
Blood vessels are exposed to multiple mechanical forces that are exerted on the vessel wall (radial, circumferential and longitudinal forces) or on the endothelial surface (shear stress). The stresses and strains experienced by arteries influence the initiation of atherosclerotic lesions, which develop at regions of arteries that are exposed to complex(More)