Learn More
The physical processes causing energy exchange between the Sun's hot corona and its cool lower atmosphere remain poorly understood. The chromosphere and transition region (TR) form an interface region between the surface and the corona that is highly sensitive to the coronal heating mechanism. High-resolution observations with the Interface Region Imaging(More)
We developed numerical codes designed for automated analysis of AIA/SDO image datasets in the 6 coronal filters, including: (i) coalignment test between different wavelengths with measurements of the altitude of the EUV-absorbing chromosphere, (ii) self-calibration by empirical correction of instrumental response functions, (iii) automated generation of(More)
Energy is required to heat the outer solar atmosphere to millions of degrees (refs 1, 2) and to accelerate the solar wind to hundreds of kilometres per second (refs 2-6). Alfvén waves (travelling oscillations of ions and magnetic field) have been invoked as a possible mechanism to transport magneto-convective energy upwards along the Sun's magnetic field(More)
The Sun's outer atmosphere, or corona, is heated to millions of degrees, considerably hotter than its surface or photosphere. Explanations for this enigma typically invoke the deposition in the corona of nonthermal energy generated by magnetoconvection. However, the coronal heating mechanism remains unknown. We used observations from the Solar Dynamics(More)
As the interface between the Sun's photosphere and corona, the chromosphere and transition region play a key role in the formation and acceleration of the solar wind. Observations from the Interface Region Imaging Spectrograph reveal the prevalence of intermittent small-scale jets with speeds of 80 to 250 kilometers per second from the narrow bright network(More)
The solar atmosphere was traditionally represented with a simple one-dimensional model. Over the past few decades, this paradigm shifted for the chromosphere and corona that constitute the outer atmosphere, which is now considered a dynamic structured envelope. Recent observations by the Interface Region Imaging Spectrograph (IRIS) reveal that it is(More)
The heating of the outer solar atmospheric layers, i.e., the transition region and corona, to high temperatures is a long-standing problem in solar (and stellar) physics. Solutions have been hampered by an incomplete understanding of the magnetically controlled structure of these regions. The high spatial and temporal resolution observations with the(More)
Mononuclear cells from peripheral blood and draining lymph nodes of 40 patients with invasive locoregional breast cancer were examined for immunological cell surface markers (E, EAhuman, EAox, EAC, SIg pos.). Concomitantly, blood lymphocytes from 36 healthy women and axillary and mesenteric lymph-nodes from patients without malignant diseases were tested as(More)
Coronal cavities are large low-density regions formed by hemispheric-scale magnetic flux ropes suspended in the Sun's outer atmosphere. They evolve over time, eventually erupting as the dark cores of coronal mass ejections. Although coronal mass ejections are common and can significantly affect planetary magnetospheres, the mechanisms by which cavities(More)
Several improvements to the MAST plant and diagnostics have facilitated new studies advancing the physics basis for ITER and DEMO, as well as for future spherical tokamaks. Using the increased heating capabilities P NBI ≤ 3.8 MW H-mode at I p = 1.2 MA was accessed showing that the energy confinement on MAST scales more weakly with I p and more strongly with(More)