Learn More
The high failure rate of drugs in the development phase requires a strategy to reduce risks by generating lead candidates from different chemical classes. We describe a new three-dimensional computational approach for lead evolution, based on multiple pharmacophore hypotheses. Using full conformational models for both active and inactive compounds, a large(More)
The dose-limiting toxicity of the highly effective anticancer agent 7-ethyl-10-[4-(1-piperidino)-1-piperidino]carbonyloxy-camptothecin (irinotecan; CPT-11) is delayed diarrhea. This is thought to be caused by either bacteria-mediated hydrolysis of the glucuronide conjugate of the active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38) or direct conversion(More)
Carboxylesterases (CE) are ubiquitous enzymes responsible for the metabolism of xenobiotics. Because the structural and amino acid homology among esterases of different classes, the identification of selective inhibitors of these proteins has proved problematic. Using Telik's target-related affinity profiling (TRAP) technology, we have identified a class of(More)
The shape of and the chemical features of a ligand are both critical for biological activity. This paper presents a strategy that uses these descriptors to build a computational model for virtual screening of bioactive compounds. Molecules are represented in a binary shape-feature descriptor space as bit-strings, and their relative activities are used to(More)
We review recent advances in computer modeling of molecular shape in drug discovery. We summarize the ways of representing shape computationally, discuss the various means of aligning molecules and shapes, consider the various ways of scoring similarity of shapes, and describe the ways in which these shapes can be used to construct molecular descriptors.(More)
Surface Plasmon Resonance (SPR) is rarely used as a primary High-throughput Screening (HTS) tool in fragment-based approaches. With SPR instruments becoming increasingly high-throughput it is now possible to use SPR as a primary tool for fragment finding. SPR becomes, therefore, a valuable tool in the screening of difficult targets such as the ubiquitin E3(More)
Does a single molecular trajectory provide an adequate sample conformational space? Our calculations indicate that for Molecular Mechanics--Poisson-Boltzmann Surface Area (MM-PBSA) measurement of protein ligand binding, a single molecular dynamics trajectory does not provide a representative sampling of phase space. For a single trajectory, the binding(More)
The large number of small organic compounds now available for drug-lead screening has led to numerous methods for classifying molecular similarity and diversity, the aim being to restore a balance between the quantity and drug-like quality of compounds in small-molecule libraries. Whereas structural and physicochemical attributes continue to be emphasized(More)
Water is the natural medium of molecules in the cell and plays an important role in protein structure, function and interaction with small molecule ligands. However, the widely used molecular mechanics Poisson-Boltzmann surface area (MM/PBSA) method for binding energy calculation does not explicitly take account of water molecules that mediate key(More)
Target-Related Affinity Profiling (TRAP) is a computational drug discovery technology that is based on 'affinity fingerprints', which are molecular descriptors derived from the protein binding preferences of small molecules. The underlying concepts of TRAP are reviewed. Affinity fingerprints are compared to molecular descriptors derived from chemical(More)