Learn More
Lysine methylation of histones is recognized as an important component of an epigenetic indexing system demarcating transcriptionally active and inactive chromatin domains. Trimethylation of histone H3 lysine 4 (H3K4me3) marks transcription start sites of virtually all active genes. Recently, we reported that the WD40-repeat protein WDR5 is important for(More)
Neurons and glia are often derived from common multipotent stem cells. In Drosophila, neural identity appears to be the default fate of these precursors. Stem cells that generate either neurons or glia transiently express neural stem cell-specific markers. Further development as glia requires the activation of glial-specific regulators. However, this must(More)
Each sensory organ of the Drosophila peripheral nervous system is derived from a single sensory organ precursor cell (SOP). These originate in territories defined by expression of the proneural genes of the Achaete-Scute complex (AS-C). Formation of ectopic sensilla outside these regions is prevented by transcriptional repression of proneural genes. We(More)
Subcellular distribution of the Prospero protein is dynamically regulated during Drosophila embryonic nervous system development. Prospero is first detected in neuroblasts where it becomes cortically localized and tethered by the adapter protein, Miranda. After division, Prospero enters the nucleus of daughter ganglion mother cells where it functions as a(More)
Drosophila NURF is an ISWI-containing chromatin remodeling complex that catalyzes ATP-dependent nucleosome sliding. By sliding nucleosomes, NURF can alter chromatin structure and regulate transcription. NURF301/BPTF is the only NURF-specific subunit of NURF and is instrumental in recruiting the complex to target genes. Here we demonstrate that three NURF301(More)
Leukocyte-like cells called hemocytes have key functions in Drosophila innate immunity. Three hemocyte types occur: plasmatocytes, crystal cells, and lamellocytes. In the absence of qimmune challenge, plasmatocytes are the predominant hemocyte type detected, while crystal cells and lamellocytes are rare. However, upon infestation by parasitic wasps, or in(More)
Selenium is implicated in many diseases, including cancer, but its function at the molecular level is poorly understood. BthD is one of three selenoproteins recently identified in Drosophila. To elucidate the function of BthD and the role of selenoproteins in cellular metabolism and health, we analyzed the developmental expression profile of this protein(More)
Although it is currently understood that the exon junction complex (EJC) is recruited on spliced mRNA by a specific interaction between its central protein, eIF4AIII, and splicing factor CWC22, we found that eIF4AIII and the other EJC core proteins Y14 and MAGO bind the nascent transcripts of not only intron-containing but also intronless genes on(More)
NURF is a conserved higher eukaryotic ISWI-containing chromatin remodeling complex that catalyzes ATP-dependent nucleosome sliding. By sliding nucleosomes, NURF is able to alter chromatin dynamics to control transcription and genome organization. Previous biochemical and genetic analysis of the specificity-subunit of Drosophila NURF (Nurf301/Enhancer of(More)
Cell differentiation reflects the balance of two opposing influences, pathways which confer specialized properties on specific cells or groups of cells, and antagonising mechanisms which modulate responsiveness to such differentiative cues. It appears that the zinc finger protein Tramtrack (Ttk) fulfils the latter function in the CNS and PNS of Drosophila.(More)
  • 1