Learn More
BACKGROUND Exercise performance data of numerous altitude research studies and competitive sporting events of the last four decades are reviewed. METHODS The primary focus is on the wide interindividual variation associated with maximal and submaximal exercise performance that occurs at different altitudes and for different periods of time at altitude. (More)
Although acute mountain sickness (AMS) has been studied for well over a century, a standard measure or index of the degree of illness for use in experimental research does not exist. This paper outlines a definition and procedures for an operational measurement of AMS using the Environmental Symptoms Questionnaire (ESQ). After 58 men completed over 650 ESQs(More)
High altitude increases pulmonary arterial pressure (PAP), but no measurements have been made in humans above 4,500 m. Eight male athletic volunteers were decompressed in a hypobaric chamber for 40 days to a barometric pressure (PB) of 240 Torr, equivalent to the summit of Mt. Everest. Serial hemodynamic measurements were made at PB 760 (sea level), 347(More)
The human visual system is sensitive to second-order modulations of the local contrast (CM) or amplitude (AM) of a carrier signal. Second-order cues are detected independently of first-order luminance signals; however, it is not clear why vision should benefit from second-order sensitivity. Analysis of the first- and second-order contents of natural images(More)
This study investigated whether autologous erythrocyte infusion would ameliorate the decrement in maximal O2 uptake (VO2max) experienced by lowlanders when they ascend to high altitude. VO2max was measured in 16 men (treadmill running) at sea level (SL) and on the 1st (HA1) and 9th (HA9) days of high-altitude (4,300 m) residence. After VO2max was measured(More)
The effect of acute hypobaric hypoxia on local sweating and cutaneous blood flow was studied in four men and four women (follicular phase of menstrual cycle), who exercised at 60% of their altitude-specific peak aerobic power for 35 min at barometric pressures (PB) of 770 Torr (sea level), 552 Torr (2,596 m), and 428 Torr (4,575 m) at an ambient temperature(More)
We hypothesized that progesterone-mediated ventilatory stimulation during the midluteal phase of the menstrual cycle would increase exercise minute ventilation (VE; l/min) at sea level (SL) and with acute altitude (AA) exposure but would only increase arterial O2 saturation (SaO2, %) with AA exposure. We further hypothesized that an increased exercise SaO2(More)
We report spirometry and radiographic data on eight normal male human subjects during prolonged graded altitude exposure to as high as 8,848 m above sea level in a hypobaric chamber. We found a significant and progressive drop in FVC by 14 +/- 3% over 40 days, which resolved slowly during the first 48 h after descent. With altitude, midrange forced(More)
A decrease in maximal O2 uptake has been demonstrated with increasing altitude. However, direct measurements of individual links in the O2 transport chain at extreme altitude have not been obtained previously. In this study we examined eight healthy males, aged 21-31 yr, at rest and during steady-state exercise at sea level and the following inspired O2(More)
The reasons for the reduced exercise capacities observed at high altitudes are not completely known. Substrate availability or accumulations of lactate and ammonium could have significant roles. As part of Operation Everest II, peak oxygen uptakes were determined in five normal male volunteers with use of progressively increasing cycling work loads at(More)