Paul B Balbo

Learn More
Cytolethal distending toxin (CDT) from the diarrheagenic bacterium Campylobacter jejuni was shown to cause a rapid and specific cell cycle arrest in HeLa and Caco-2 cells. Within 24 h of treatment, CDT caused HeLa cells to arrest with a 4N DNA content, indicative of cells in G2 or early M phase. Immunofluorescence studies indicated that the arrested cells(More)
We report the 1.8 A structure of yeast poly(A) polymerase (PAP) trapped in complex with ATP and a five residue poly(A) by mutation of the catalytically required aspartic acid 154 to alanine. The enzyme has undergone significant domain movement and reveals a closed conformation with extensive interactions between the substrates and all three polymerase(More)
Polyadenylate polymerase (PAP) catalyzes the synthesis of poly(A) tails on the 3'-end of pre-mRNA. PAP is composed of three domains: an N-terminal nucleotide-binding domain (homologous to the palm domain of DNA and RNA polymerases), a middle domain (containing other conserved, catalytically important residues), and a unique C-terminal domain (involved in(More)
The PLP-dependent, biosynthetic arginine decarboxylase (ADC) of Yersinia pestis was investigated using steady-state kinetics employing structural analogues of arginine as both alternative substrates and competitive inhibitors. The inhibitor analysis indicates that binding of the carboxyl and guanidinium groups of the substrate, l-arginine, provides(More)
A siderophore-dependent iron transport system of the pathogenic yersiniae plays a role in the pathogenesis of these organisms. The structure of the yersiniabactin (Ybt) siderophore produced by Yersinia enterocolitica has been elucidated. This paper reports the purification of Ybt from Yersinia pestis and demonstrates that it has the same structure as Ybt(More)
Polyadenylate polymerase (PAP) catalyzes the synthesis of 3'-polyadenylate tails onto mRNA. A comprehensive steady-state kinetic analysis of PAP was conducted which included initial velocity studies of the forward and reverse reactions, inhibition studies, and the use of alternative substrates. The reaction (A(n) + ATP <--> A(n+1) + PP(i)) is adequately(More)
In yeast, the mRNA processing enzyme poly(A) polymerase is tethered to the much larger 3'-end processing complex via Fip1, a 36 kDa protein of unknown structure. We report the 2.6 A crystal structure of yeast poly(A) polymerase in complex with a peptide containing residues 80-105 of Fip1. The Fip1 peptide binds to the outside surface of the C-terminal(More)
It has been inferred from structural and computational studies that the mechanism of DNA polymerases involves subtle but important discrete steps that occur between binding and recognition of the correct dNTP and chemical catalysis. These steps potentially include local conformational changes involving active site residues, reorganization of(More)
The alpha(2) epsilon (2) subcomponent (218.6 kDa) of the 1.99 MDa acetyl-CoA decarbonylase/synthase (ACDS) multienzyme complex is an Ni/Fe-S enzyme that catalyzes reversible CO(2)/CO reduction in the context of acetyl-CoA synthesis. The ACDS complex is required for methanogenesis from acetate in methanogenic archaea. The alpha(2)epsilon(2) subcomponent from(More)
  • 1