Learn More
We investigated H2S attenuation by dissimilatory perchlorate-reducing bacteria (DPRB). All DPRB tested oxidized H2S coupled to (per)chlorate reduction without sustaining growth. H2S was preferentially utilized over organic electron donors resulting in an enriched (34S)-elemental sulfur product. Electron microscopy revealed elemental sulfur production in the(More)
Synchrotron Radiation (SR) presents itself as a "play-ground" with a large range of methods and techniques suitable to unveil the mysteries of life. Here we attempt to present a few of these methods that complement those employed in the home laboratory. SR diffraction, spectroscopy and imaging methods relevant to the atomic structure determination and(More)
The following publications about the effect of contaminants on fuel cell performance and durability were authored by members of Karen Swider-Lyons' research group in the Alternative products on Pt nanoparticles as a function of electrode potential and oxidative properties of carrier gas: In situ sulfur K-edge XANES approach. Effect of glycol-based coolants(More)
Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy was performed on phosphate mineral specimens including (a) twelve specimens from the apatite group covering a range of compositional variation and crystallinity; (b) six non-apatite calcium-rich phosphate minerals; (c) 15 aluminium-rich phosphate minerals; (d) ten phosphate minerals(More)
Significant nanoscale disorder of Cu and Ca atomic substitution is observed in CaCu(3)Ti(4)O(12), based on our integrated study using quantitative electron diffraction and extended x-ray absorption fine structure. Unambiguous identification of this previously omitted disorder is made possible by the unique sensitivity of these probes to valence-electron(More)
Identifying the mechanisms by which P is bound to soils and soil constituents is ultimately important as they provide information on the stability of bound species and their reactivity in the environment. EXAFS studies were carried out to provide information on how the local chemical environment of sorbed P changes as an effect of pH and time. Goethite was(More)
To investigate the effect of P surface loading on the structure of surface complexes formed at the goethite/water interface, goethite was reacted with orthophosphate at P concentrations of 0.1, 0.2, and 0.8 mmol L(-1) at pH 4.5 for 5 days. The P concentrations were chosen to ensure that P loadings at the surface would allow one to follow the transition(More)
Electron channeling experiments performed on individually scanned, single columns of atoms show that in highly n-type Si grown at low temperatures the primary electrically deactivating defect cannot belong to either the widely accepted class of donor-vacancy clusters or a recently proposed class of donor pairs. First-principles calculations suggest a new(More)
The "tender" energy range of 1 to 5 keV, between the energy ranges of most "hard" (>5 keV) and "soft" (<1 keV) synchrotron X-ray facilities, offers some unique opportunities for synchrotron- based X-ray absorption fine structure spectroscopy in life sciences. In particular the K absorption edges of Na through Ca offer opportunities to study local structure,(More)