Paul A. Walton

Learn More
CKIP-1 is a recently identified interaction partner of protein kinase CK2 with a number of protein-protein interaction motifs, including an N-terminal pleckstrin homology domain. To test the hypothesis that CKIP-1 has a role in targeting CK2 to specific locations, we examined the effects of CKIP-1 on the localization of CK2. These studies demonstrated that(More)
Rhamm (receptor for hyaluronan-mediated motility) is an hyaluronan binding protein with limited expression in normal tissues and high expression in advanced cancers. To understand its physiological functions and identify the molecular mechanisms underlying these functions, we created mice with a genetic deletion of Rhamm. We show that Rhamm(-/-) fibroblasts(More)
Peroxisomes play an important role in human cellular metabolism by housing enzymes involved in a number of essential biochemical pathways. Many of these enzymes are oxidases that transfer hydrogen atoms to molecular oxygen forming hydrogen peroxide. The organelle also contains catalase, which readily decomposes the hydrogen peroxide, a potentially damaging(More)
An assay of pulmonary phosphatidate phosphohydrolase activity has been developed that employs a chemically defined liposome substrate of equimolar phosphatidate and phosphatidylcholine. Enzyme assays employing this substrate resolved two distinct activities based upon their requirements for Mg2+. Assays were performed in the presence and absence of 2 mM(More)
The invasion and migration occurring in primary neoplastic tissue explants were studied by using a three-dimensional collagen matrix model, subsequent time-lapse videomicroscopy, and computer-assisted cell tracking. We show that not only single cells but groups of clustered cells comprising 5 to more than 100 cells detach from the primary tumor lesion and(More)
Bcl-2 is an integral membrane protein that functions as a suppressor of programmed cell death. It contains a COOH-terminal signal anchor sequence that is selective for import and insertion of Bcl-2 into the mitochondrial outer membrane and, by a different mechanism, can also direct the protein to other membrane sites. Deletion of the signal anchor sequence(More)
Previous reports have suggested that Cx26 exhibits unique intracellular transport pathways en route to the cell surface compared with other members of the connexin family. To directly examine and compare nascent and steady-state delivery of Cx43 and Cx26 to the plasma membrane and gap junction biogenesis we expressed fluorescent-protein-tagged Cx43 and Cx26(More)
The molecular mechanisms of peroxisome biogenesis have begun to emerge; in contrast, relatively little is known about how the organelle functions as cells age. In this report, we characterize age-related changes in peroxisomes of human cells. We show that aging compromises peroxisomal targeting signal 1 (PTS1) protein import, affecting in particular the(More)
Peroxisomes are metabolically active organelles that participate in the oxidation of long-chain fatty acids and in the biosynthesis of bile acids, cholesterol, and ether phospholipids. Even though maintenance of a stable acid-base milieu is essential for proper peroxisomal function, the determination of the peroxisomal pH (pH(p)) remains inconclusive, and(More)
A variety of cysteine-containing, lipid-modified peptides are found to be S-acylated by cultured mammalian cells. The acylation reaction is highly specific for cysteinyl over serinyl residues and for lipid-modified peptides over hydrophilic peptides. The S-acylation process appears by various criteria to be enzymatic and resembles the S-acylation of plasma(More)