Learn More
The CrCAX1 gene encoding a Ca2+/H+ and Na+/H+ exchanger was cloned and characterized from the unicellular green alga Chlamydomonas reinhardtii to begin to understand the mechanisms of cation homeostasis in this model organism. CrCAX1 was more closely related to fungal cation exchanger (CAX) genes than those from higher plants but has structural(More)
Double-strand breaks (DSBs) in DNA may occur spontaneously in the cell or be induced experimentally by gamma-irradiation, and represent one of the most serious threats to genomic integrity. Non-homologous end joining (NHEJ) rather than homologous recombination appears to be the major pathway for DSB repair in humans and plants, and it may also be the major(More)
The Arabidopsis DNA ligase 1 gene (AtLIG1) is indispensable for cell viability. AtLIG1 expresses one major and two minor mRNA transcripts differing only in the length of the 5' untranslated leader sequences preceding a common ORF. Control of AtLIG1 isoform production and intracellular targeting depends upon mechanisms controlling the choice of translation(More)
DSBs (double-strand breaks) are one of the most serious forms of DNA damage that can occur in a cell's genome. DNA replication in cells containing DSBs, or following incorrect repair, may result in the loss of large amounts of genetic material, aneuploid daughter cells and cell death. There are two major pathways for DSB repair: HR (homologous(More)
DNA ligase 1 (AtLIG1) is the only essential DNA ligase activity in Arabidopsis and is implicated in the important processes of DNA replication, repair and recombination and in transgene insertion during Agrobacterium-mediated plant transformations. The mitochondrial and nuclear forms of DNA ligase 1 in Arabidopsis are translated from a single mRNA species(More)
Protein reserves in the cereal endosperm are sequentially degraded to small peptides and amino acids during germination and these are translocated across the scutellum to support growth of the embryo. Peptide transport in the germinating barley grain is mediated by specific carriers localized to the plasma membrane of the scutellar epithelium. In isolated(More)
  • 1