Learn More
BACKGROUND Pendrin belongs to a superfamily of Cl-/anion exchangers and is expressed in the inner ear, the thyroid gland, and the kidney. In humans, mutations in pendrin cause Pendred syndrome characterized by sensorineural deafness and goiter. Recently pendrin has been localized to the apical side of non-type A intercalated cells of the cortical collecting(More)
Final urinary acidification is mediated by the action of vacuolar H(+)-ATPases expressed in acid-secretory type A intercalated cells (A-IC) in the collecting duct. Angiotensin II (AngII) has profound effects on renal acid-base transport in the proximal tubule, distal tubule, and collecting duct. This study investigated the effects on vacuolar H(+)-ATPase(More)
Vacuolar-type H(+)-ATPases (V-H(+)-ATPases) are the major H(+)-secreting protein in the distal portion of the nephron and are involved in net H(+) secretion (bicarbonate generation) or H(+) reabsorption (net bicarbonate secretion). In addition, V-H(+)-ATPases are involved in HCO(3)(-) reabsorption in the proximal tubule and distal tubule. V-H(+)-ATPases(More)
BACKGROUND Early prediction of outcome would be useful for an optimal intensive care management of liver transplant recipients. Indocyanine green clearance can be measured non-invasively by pulse spectrophometry and is closely related to liver function. METHODS This study was undertaken to assess the predictive value of a combination of the model of end(More)
Mutations in the human gene that encodes the AE1 Cl(-)/HCO(3)(-) exchanger (SLC4A1) cause autosomal recessive and dominant forms of distal renal tubular acidosis (dRTA). A mouse model that lacks AE1/slc4a1 (slc4a1-/-) exhibited dRTA characterized by spontaneous hyperchloremic metabolic acidosis with low net acid excretion and, inappropriately, alkaline(More)
Systemic acid-base homeostasis is the product of complex interactions between metabolism, regulated exhalation of CO2 by the lungs and acid or base excretion by the kidneys. The importance of renal acid-base transport has been highlighted by mutations identified in several proteins involved in this task in patients with inborn forms of renal tubular(More)
Urinary acidification in the collecting duct is mediated by the activity of H(+)-ATPases and is stimulated by various factors including angiotensin II and aldosterone. Classically, aldosterone effects are mediated via the mineralocorticoid receptor. Recently, we demonstrated a nongenomic stimulatory effect of aldosterone on H(+)-ATPase activity in(More)
Apical reabsorption of dibasic amino acids and cystine in kidney is mediated by the heteromeric amino acid antiporter rBAT/b(0,+)AT (system b(0,+)). Mutations in rBAT cause cystinuria type A, whereas mutations in b(0,+)AT cause cystinuria type B. b(0,+)AT is the catalytic subunit, whereas it is believed that rBAT helps the routing of the rBAT/b(0,+)AT(More)
The multisubunit vacuolar-type proton-translocating ATPases (H(+)-ATPases) mediate the acidification of various intracellular organelles. In a subset of tissues, they also mediate H(+) secretion at the plasma membrane. Two isoforms of the H(+)-ATPase B-subunit exist in humans; we have shown that mutations in ATP6V1B1, encoding the B1-isoform, cause the(More)
Vacuolar H(+)-ATPase are multi-subunit containing pumps important for several processes along the nephron such as receptor mediated endocytosis, acidification of intracellular organelles, bicarbonate reabsorption and secretion, and H(+)- extrusion. Mutations in the human a4 (ATP6V0A4) subunit cause distal renal tubular acidosis (dRTA). There are 4 known(More)