Learn More
Motor neuron diseases (MNDs) are a group of neurodegenerative disorders with involvement of upper and/or lower motor neurons, such as amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), progressive bulbar palsy, and primary lateral sclerosis. Recently, we have mapped a new locus for an atypical form of ALS/MND (atypical amyotrophic lateral(More)
The switch from short- to long-term facilitation induced by behavioral sensitization in Aplysia involves CREB-like proteins, as well as the immediate-early gene ApC/EBP. Using the bZIP domain of ApC/EBP in a two-hybrid system, we have cloned ApCREB2, a transcription factor constitutively expressed in sensory neurons that resembles human CREB2 and mouse(More)
Before the fusion of synaptic vesicles with the plasma membrane, a protein complex is thought to form between VAMP--an integral membrane protein of the vesicle--and two proteins associated with the plasma membrane, SNAP-25 and syntaxin. The yeast two-hybrid interaction cloning system has now been used to identify additional proteins from Aplysia that(More)
The autosomal recessive neurodegenerative disease spinal muscular atrophy (SMA) results from low levels of survival motor neuron (SMN) protein; however, it is unclear how reduced SMN promotes SMA development. Here, we determined that ubiquitin-dependent pathways regulate neuromuscular pathology in SMA. Using mouse models of SMA, we observed widespread(More)
Over expression of Aplysia synaptotagmin in acutely dissected cholinergic neurons from the buccal ganglia, or in primary co-cultures of glutaminergic sensory neurons and motor neurons, causes a reduction synaptic transmission. Anti-sense oligonucleotide treatment of similar cultures produced an enhancement of synaptic transmission. The interaction between(More)
Acetylcholine (ACh) is an important neurotransmitter in the mammalian brain; it is implicated in arousal, learning, and other cognitive functions. Recent studies indicate that nicotinic receptors contribute to these cholinergic effects, in addition to the established role of muscarinic receptors. In the hippocampus, where cholinergic involvement in learning(More)
The dendritic localization of mRNAs has been proposed to underlie the structural and functional polarity of neurons, as well as certain aspects of synaptic plasticity. Even though there is no conclusive evidence that such a localization is a physiological requirement, studies of mRNA localization in relation to function in other cell types and recent(More)
VAMP/synaptobrevin is a synaptic vesicle protein that is essential for neurotransmitter release. Intracellular injection of antisera against the Aplysia californica VAMP/synaptobrevin-binding protein ApVAP33 inhibited evoked excitatory postsynaptic potentials (EPSPs) in cultured cells, suggesting that this association may regulate the function of(More)
A mis-sense point mutation in the human VAPB gene is associated with a familial form of motor neuron disease that has been classified as Amyotrophic Lateral Sclerosis type VIII. Affected individuals suffer from a spinal muscular atrophy (SMA), amyotrophic lateral sclerosis (ALS) or an atypical slowly progressing form of ALS. Mammals have two homologous VAP(More)
Exocytosis of specialized endothelial cell secretory organelles, Weibel-Palade bodies (WPBs), is thought to play an important role in regulating hemostasis and intravascular inflammation. The major WPB core proteins are Von Willebrand factor (VWF) and its propolypeptide (Proregion), constituting more than 95% of the content. Although the composition of the(More)