Learn More
Malaria parasites generate vast quantities of heme during blood stage infection via hemoglobin digestion and limited de novo biosynthesis, but it remains unclear if parasites metabolize heme for utilization or disposal. Recent in vitro experiments with a heme oxygenase (HO)-like protein from Plasmodium falciparum suggested that parasites may enzymatically(More)
Heme metabolism is central to blood-stage infection by the malaria parasite Plasmodium falciparum. Parasites retain a heme biosynthesis pathway but do not require its activity during infection of heme-rich erythrocytes, where they can scavenge host heme to meet metabolic needs. Nevertheless, heme biosynthesis in parasite-infected erythrocytes can be(More)
A longstanding proposal in enzymology is that enzymes are electrostatically and geometrically complementary to the transition states of the reactions they catalyze and that this complementarity contributes to catalysis. Experimental evaluation of this contribution, however, has been difficult. We have systematically dissected the potential contribution to(More)
Enzymes are classically proposed to accelerate reactions by binding substrates within active-site environments that are structurally preorganized to optimize binding interactions with reaction transition states rather than ground states. This is a remarkably formidable task considering the limited 0.1-1 A scale of most substrate rearrangements. The(More)
Understanding the electrostatic forces and features within highly heterogeneous, anisotropic, and chemically complex enzyme active sites and their connection to biological catalysis remains a longstanding challenge, in part due to the paucity of incisive experimental probes of electrostatic properties within proteins. To quantitatively assess the landscape(More)
Hydrogen bond networks are key elements of protein structure and function but have been challenging to study within the complex protein environment. We have carried out in-depth interrogations of the proton transfer equilibrium within a hydrogen bond network formed to bound phenols in the active site of ketosteroid isomerase. We systematically varied the(More)
The thousands of enzyme structures solved to date have consistently revealed that biological catalysis occurs within sequestered pockets containing complex interdigitations of polar and hydro-phobic groups and from which water molecules are displaced upon substrate binding. 1 This chemical complexity has sparked considerable controversy regarding the(More)
The catalytic importance of enzyme active-site interactions is frequently assessed by mutating specific residues and measuring the resulting rate reductions. This approach has been used in bacterial ketosteroid isomerase to probe the energetic importance of active-site hydrogen bonds donated to the dienolate reaction intermediate. The conservative Tyr16Phe(More)
Infrared (IR) band shifts of isolated vibrational transitions can serve as quantitative and directional probes of local electrostatic fields, due to the vibrational Stark effect. However, departures from the Stark model can arise when the probe participates in specific, chemical interactions, such as direct hydrogen bonding. We present a method to identify(More)
Hydrogen bond networks are key elements of biological structure and function. Nevertheless, their structural properties are challenging to assess within complex macromolecules. Hydrogen-bonded protons are not observed in the vast majority of protein X-ray structures, and static crystallographic models provide limited information regarding the dynamical(More)