Learn More
Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and(More)
Kinetoplastida are protozoan organisms that probably diverged early in evolution from other eukaryotes. They are characterized by a number of unique features with respect to their energy and carbohydrate metabolism. These organisms possess peculiar peroxisomes, called glycosomes, which play a central role in this metabolism; the organelles harbour enzymes(More)
Protozoan Kinetoplastida, including the pathogenic trypanosomatids of the genera Trypanosoma and Leishmania, compartmentalize several important metabolic systems in their peroxisomes which are designated glycosomes. The enzymatic content of these organelles may vary considerably during the life-cycle of most trypanosomatid parasites which often are(More)
Glycolysis and glyconeogenesis play crucial roles in the ATP supply and synthesis of glycoconjugates, important for the viability and virulence, respectively, of the human-pathogenic stages of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp. These pathways are, therefore, candidate targets for antiparasite drugs. The glycolytic/gluconeogenic(More)
The metabolic network of a cell represents the catabolic and anabolic reactions that interconvert small molecules (metabolites) through the activity of enzymes, transporters and non-catalyzed chemical reactions. Our understanding of individual metabolic networks is increasing as we learn more about the enzymes that are active in particular cells under(More)
BACKGROUND Trypanosomes can synthesize polyunsaturated fatty acids. Previously, we have shown that they possess stearoyl-CoA desaturase (SCD) and oleate desaturase (OD) to convert stearate (C18) into oleate (C18:1) and linoleate (C18:2), respectively. Here we examine if OD is essential to these parasites. METHODOLOGY Cultured procyclic (insect-stage) form(More)
African trypanosomes have emerged as promising unicellular model organisms for the next generation of systems biology. They offer unique advantages, due to their relative simplicity, the availability of all standard genomics techniques and a long history of quantitative research. Reproducible cultivation methods exist for morphologically and physiologically(More)
BACKGROUND Glycosomes are a specialized form of peroxisomes (microbodies) present in unicellular eukaryotes that belong to the Kinetoplastea order, such as Trypanosoma and Leishmania species, parasitic protists causing severe diseases of livestock and humans in subtropical and tropical countries. The organelles harbour most enzymes of the glycolytic pathway(More)
In trypanosomatids, glucose-6-phosphate dehydrogenase (G6PDH), the first enzyme of the pentosephosphate pathway, is essential for the defense of the parasite against oxidative stress. Trypanosoma brucei, Trypanosoma cruzi, and Leishmania mexicana G6PDHs have been characterized. The parasites' G6PDHs contain a unique 37 amino acid long N-terminal extension(More)
BACKGROUND AND METHODOLOGY Recently, we reported on a new class of naphthoquinone derivatives showing a promising anti-trypanosomatid profile in cell-based experiments. The lead of this series (B6, 2-phenoxy-1,4-naphthoquinone) showed an ED(50) of 80 nM against Trypanosoma brucei rhodesiense, and a selectivity index of 74 with respect to mammalian cells. A(More)