Paul A. Johnson

Learn More
The 1992 magnitude 7.3 Landers earthquake triggered an exceptional number of additional earthquakes within California and as far north as Yellowstone and Montana. Since this observation, other large earthquakes have been shown to induce dynamic triggering at remote distances--for example, after the 1999 magnitude 7.1 Hector Mine and the 2002 magnitude 7.9(More)
It remains unknown how the small strains induced by seismic waves can trigger earthquakes at large distances, in some cases thousands of kilometres from the triggering earthquake, with failure often occurring long after the waves have passed. Earthquake nucleation is usually observed to take place at depths of 10-20 km, and so static overburden should be(More)
This Letter reports on work performed to locate and interrogate a nonlinear scatterer in a linearly elastic medium through the use of a time reversal mirror in combination with nonlinear dynamics. Time reversal provides the means to spatially and temporally localize elastic energy on a scattering feature while the nonlinear dynamics spectrum allows one to(More)
Reverse time migration (RTM) is a commonly employed imaging technique in seismic applications (e.g., to image reservoirs of oil). Its standard implementation cannot account for multiple scattering/reverberation. For this reason it has not yet found application in nondestructive evaluation (NDE). This paper applies RTM imaging to NDE applications in bounded(More)
The transition from linear to nonlinear dynamical elasticity in rocks is of considerable interest in seismic wave propagation as well as in understanding the basic dynamical processes in consolidated granular materials. We have carried out a careful experimental investigation of this transition for Berea and Fontainebleau sandstones. Below a(More)
Nonlinear resonant ultrasound spectroscopy (NRUS) consists of evaluating one or more resonant frequency peak shifts while increasing excitation amplitude. NRUS exhibits high sensitivity to global damage in a large group of materials. Most studies conducted to date are aimed at interrogating the mechanical damage influence on the nonlinear response, applying(More)
The ability of the time reversal process to reconstruct sources of finite size relative to a wavelength is investigated. Specifically the quality of the spatial reconstruction of a finite sized source will be presented through the use of time reversal experiments conducted on an aluminum plate. The data presented in the paper show that time reversal can(More)
An energy current imaging method is presented for use in locating sources of wave energy during the back propagation stage of the time reversal process. During the back propagation phase of an ideal time reversal experiment, wave energy coalesces from all angles of incidence to recreate the source event; after the recreation, wave energy diverges in every(More)