Learn More
Anatomical evidence indicates that medial prefrontal cortex (mPFC) neurons project to the dorsal raphe nucleus (DR). In this study, we functionally characterized this descending pathway in rat brain. Projection neurons in the mPFC were identified by antidromic stimulation from the DR. Electrical stimulation of the mPFC mainly inhibited the activity of DR(More)
We examined the in vivo effects of the hallucinogen 4-iodo-2,5-dimethoxyamphetamine (DOI). DOI suppressed the firing rate of 7 of 12 dorsal raphe (DR) serotonergic (5-HT) neurons and partially inhibited the rest (ED(50) = 20 microg/kg, i.v.), an effect reversed by M100907 (5-HT(2A) antagonist) and picrotoxinin (GABA(A) antagonist). DOI (1 mg/kg, s.c.)(More)
The prefrontal cortex plays a key role in the control of higher brain functions and is involved in the pathophysiology and treatment of schizophrenia. Here we report that approximately 60% of the neurons in rat and mouse prefrontal cortex express 5-HT(1A) and/or 5-HT2A receptor mRNAs, which are highly co-localized (approximately 80%). The electrical(More)
There is considerable interest in the regulation of the extracellular compartment of the transmitter serotonin (5-hydroxytryptamine, 5-HT) in the midbrain raphe nuclei because it can control the activity of ascending serotonergic systems and the release of 5-HT in terminal areas of the forebrain. Several intrinsic and extrinsic factors of 5-HT neurons that(More)
Serotonin is involved in psychiatric disorders exhibiting abnormal prefrontal cortex (PFC) function (e.g. major depression, schizophrenia). We examined the effect of the stimulation of the dorsal and median raphe nuclei (DR and MnR, respectively) on the activity of PFC neurons. Electrical stimulation of DR/MnR inhibited 66% (115/173) of pyramidal neurons in(More)
Atypical antipsychotics increase dopamine (DA) release in the medial prefrontal cortex (mPFC), an effect possibly involved in the superior effects of atypical versus classical antipsychotics on cognitive/negative symptoms. We examined the role of 5-HT1A receptors in the mPFC on the modulation of dopaminergic activity and the mesocortical DA release in vivo.(More)
The selective serotonin reuptake inhibitors (SSRIs) are the most frequently prescribed antidepressant drugs, because they are well tolerated and have no severe side effects. They rapidly block serotonin (5-HT) reuptake, yet the onset of their therapeutic action requires weeks of treatment. This delay is the result of presynaptic and postsynaptic adaptive(More)
NMDA receptor (NMDA-R) antagonists are extensively used as schizophrenia models because of their ability to evoke positive and negative symptoms as well as cognitive deficits similar to those of the illness. Cognitive deficits in schizophrenia are associated with prefrontal cortex (PFC) abnormalities. These deficits are of particular interest because an(More)
The serotonergic pathways originating in the dorsal and median raphe nuclei (DR and MnR, respectively) are critically involved in cortical function. Serotonin (5-HT), acting on postsynaptic and presynaptic receptors, is involved in cognition, mood, impulse control and motor functions by (1) modulating the activity of different neuronal types, and (2)(More)
Aripiprazole is an atypical antipsychotic drug with high in vitro affinity for 5-HT1A, 5-HT2A and dopamine (DA) D2 receptors. However, its in vivo actions in the brain are still poorly characterized. The aim was to study the in vivo actions of aripiprazole in the rat and mouse brain. Brain microdialysis and single-unit extracellular recordings were(More)