Patsy S. Dickinson

Learn More
Crustaceans have long been used for peptide research. For example, the process of neurosecretion was first formally demonstrated in the crustacean X-organ–sinus gland system, and the first fully characterized invertebrate neuropeptide was from a shrimp. Moreover, the crustacean stomatogastric and cardiac nervous systems have long served as models for(More)
Central pattern generators are subject to extensive modulation that generates flexibility in the rhythmic outputs of these neural networks. The effects of neuromodulators interact with one another, and modulatory neurons are themselves often subject to modulation, enabling both higher order control and indirect interactions among central pattern generators.(More)
The development of expressed sequence tags (ESTs) for crustacean cDNA libraries and their deposition in publicly accessible databases has generated a rich resource for peptide discovery in this commercially and ecologically important arthropod subphylum. Here, we have conducted in silico searches of these databases for unannotated ESTs encoding putative(More)
In the isolated stomatogastric nervous system of the lobster Fasus lalandii, the strong modifications of the pyloric motor pattern induced by firing of the single anterior pyloric modulator neurone (APM) are due primarily to modulation by APM activity of the regenerative membrane properties which are responsible for the 'burstiness' of all the pyloric(More)
1. The cardiac sac motor pattern consists of slow and irregular impulse bursts in the motor neurons [cardiac sac dilator 1 and 2 (CD1 and CD2)] that innervate the dilator muscles of the cardiac sac region of the crustacean foregut. 2. The effects of the peptides, proctolin and red pigment-concentrating hormone (RPCH), on the cardiac sac motor patterns(More)
Animals make many different movements as circumstances dictate. These movements often involve the coordination of several neural networks, the output of which can be changed by modulatory substances. Here we report that the neuropeptide red pigment concentrating hormone modulates the interactions between two rhythmic pattern-generating networks in the(More)
In insects, a family of peptides with sequence homology to the vertebrate calcitonins has been implicated in the control of diuresis, a process that includes mixing of the hemolymph. Here, we show that a member of the insect calcitonin-like diuretic hormone (CLDH) family is present in the American lobster, Homarus americanus, serving, at least in part, as a(More)
pQDLDHVFLRFamide is a highly conserved crustacean neuropeptide with a structure that places it within the myosuppressin subfamily of the FMRFamide-like peptides. Despite its apparent ubiquitous conservation in decapod crustaceans, the paracrine and/or endocrine roles played by pQDLDHVFLRFamide remain largely unknown. We have examined the actions of this(More)
In the lobsters Fasus lalandii and Palinurus vulgaris, the rhythmical activity of the pyloric pattern generator of the stomatogastric nervous system is strongly modified by the firing of a single identified interneurone, whose activity we have recorded from the cell body, in vitro. The cell body of this interneurone, the anterior pyloric modulator (APM), is(More)
Two beta-pigment-dispersing hormone (beta-PDH) isoforms have been identified in several decapod crustaceans, including the crab Cancer productus, but whether these peptides serve common or distinct physiological roles remains to be elucidated. Here we show that the distribution of beta-PDH-like immunoreactivity in the nervous system of C. productus is(More)