Patrizia Proia

Learn More
It is well established that inorganic arsenic induces neurotoxic effects and neurological defects in humans and laboratory animals. The cellular and molecular mechanisms of its actions, however, remain elusive. Herein we report the effects of arsenite (NaAsO2) on primary cultures of rat astrocytes. Cells underwent induction of heat shock protein 70 only at(More)
We previously set a three-cell-type coculture system in which neurons and astrocytes synergistically induce brain capillary endothelial cells to form a monolayer with permeability properties resembling those of the physiological blood-brain barrier. Moreover, we recently found that neurons produce fibroblast growth factor-2 and vascular endothelial growth(More)
Microvesicles (MVs) shed from G26/24 oligodendroglioma cells were previously reported to cause a reproducible, dose-dependent, inhibitory effect on neurite outgrowth, and eventually neuronal apoptosis, when added to primary cultures of rat cortical neurons. These effects were reduced but not abolished by functional monoclonal antibodies against Fas-L. In(More)
We report the identification of a cDNA that encodes a putative protein of 94 amino acids and expected molecular weight of 10.7 kDa, the C-terminal half of which is identical to that of PEP19, a small, brain-specific protein involved in Ca++/calmodulin signaling. The novel rat-specific protein, tentatively named long PEP19 isoform (LPI), is the product of(More)
Anabolic-androgenic steroids (AAS) are lipophilic hormones often taken in excessive quantities by athletes and bodybuilders to enhance performance and increase muscle mass. AAS exert well known toxic effects on specific cell and tissue types and organ systems. The attention that androgen abuse has received lately should be used as an opportunity to educate(More)
Phosphatidylinositol 4-phosphate 5-kinase (PI(4)P5K) is a type I lipid kinase that generates the lipid second messenger phospholipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) and functions downstream of RhoA in actin organization. It is known to play an essential role in neurite remodeling, yielding a phenotype identical to that seen in cells(More)
Cadmium is a long-living heavy metal, abundantly present in the environment, which accumulates in the body. In this study, we investigated the effects of cadmium on the expression of molecular chaperones, and of certain cell-specific proteins, in a variety of brain cell types in culture, namely primary cultures of rat cortical neurons and astrocytes, a(More)
We previously found that neurons are able to affect the ability of brain capillary endothelial cells to form in vitro a monolayer with properties resembling the blood-brain barrier. We then looked, by immunofluorescence and western analysis, for factors, produced by neurons, with the potential to influence growth and differentiation of endothelial cells. In(More)
The ability of a cell to respond to a particular hormone depends on the presence of specific receptors for those hormones. Once the hormone has bound to its receptor, and following structural and biochemical modifications to the receptor, it separates from cytoplasmic chaperone proteins, thereby exposing the nuclear localization sequences that result in the(More)
The semaphorins and plexins comprise a family of cysteine-rich proteins implicated in control of nerve growth and development and regulation of the immune response. Our group and others have found that Semaphorin 4D (SEMA4D) and its receptor, Plexin-B1, play an important role in tumor-induced angiogenesis, with some neoplasms producing SEMA4D in a manner(More)