Learn More
AIM In the present study, we investigated whether global DNA methylation levels are affected by mitochondrial DNA (mtDNA) variants, which are known to modulate mitochondrial functions. MATERIALS & METHODS Global DNA methylation levels were evaluated in peripheral blood DNA collected from adult subjects and in vitro using the DNA of cybrid cells harboring(More)
Epigenetic silencing of tumor suppressor genes frequently occurs and may account for their inactivation in cancer cells. We previously demonstrated that miR-29b is a tumor suppressor microRNA (miRNA) that targets de novo DNA methyltransferases and reduces the global DNA methylation of multiple myeloma (MM) cells. Here, we provide evidence that epigenetic(More)
Aberrant DNA methylation plays a relevant role in multiple myeloma (MM) pathogenesis. MicroRNAs (miRNAs) are a class of small non-coding RNAs that recently emerged as master regulator of gene expression by targeting protein-coding mRNAs. However, miRNAs involvement in the regulation of the epigenetic machinery and their potential use as therapeutics in MM(More)
DNA methylation is a common epigenetic modification of the mammalian genome. Conflicting data regarding the possible presence of methylated cytosines within mitochondrial DNA (mtDNA) have been reported. To clarify this point, we analysed the methylation status of mtDNA control region (D-loop) on human and murine DNA samples from blood and cultured cells by(More)
The brown fat specific UnCoupling Protein 1 (UCP1) is involved in thermogenesis, a process by which energy is dissipated as heat in response to cold stress and excess of caloric intake. Thermogenesis has potential implications for body mass control and cellular fat metabolism. In fact, in humans, the variability of the UCP1 gene is associated with obesity,(More)
Given the dramatic increase in ageing populations, it is of great importance to understand the genetic and molecular determinants of healthy ageing and longevity. Semi-supercentenarians (subjects who reached an age of 105-109 years) arguably represent the gold standard of successful human ageing because they managed to avoid or postpone the onset of major(More)
Multiple myeloma (MM) cells induce relevant angiogenic effects within the human bone marrow milieu (huBMM) by the aberrant expression of angiogenic factors. Hypoxia triggers angiogenic events within the huBMM and the transcription factor hypoxia-inducible factor-1α (HIF-1α) is over-expressed by MM cells. Since synthetic miR-199a-5p mimics negatively(More)
To explore possible relationships between mitochondrial DNA (mtDNA) polymorphism and the expression levels of stress-responder nuclear genes we assembled five cybrid cell lines by repopulating 143B.TK(-) cells, depleted of their own mtDNA (Rho(0) cells), with foreign mitochondria with different mtDNA sequences (lines H, J, T, U, X). We evaluated, at both(More)
Over the past two decades, a growing interest on the research of the biological basis of human longevity has emerged, in order to clarify the intricacy of biological and environmental factors affecting (together with stochastic factors) the quality and the rate of human aging. These researches have outlined a complex scenario in which epigenetic marks, such(More)
Signaling pathways between mitochondrial and nuclear genomes are activated to preserve cellular homeostasis, especially in the event of stress. Using cybrid cell lines, we investigated whether inherited mitochondrial DNA (mtDNA) variants modulate the expression profiles of mammalian sirtuins (SIRT1-7) under oxidative stress conditions. We found that the(More)