Learn More
PPARs are a class of nuclear receptors involved in lipid and glucidic metabolism, immune regulation and cell differentiation. This spectrum of biological activities stimulated pharmacological research to synthetize different molecules with PPARs binding activity with beneficial therapeutic effects. As a matter of fact, some synthetic PPAR-ligands have been(More)
Neuron-specific enolase (NSE) is known to be a cell specific isoenzyme of the glycolytic enzyme enolase. In vertebrate organisms three isozymes of enolase, expressed by different genes, are present: enolase α is ubiquitous; enolase β is muscle-specific and enolase γ is neuron-specific. The expression of NSE, which occurs as γγ- and αγ-dimer, is a late event(More)
Before the discovery of peroxisome proliferator activated receptors (PPARs), it was well known that certain drugs considered as classical PPAR-alpha agonists induced hepatocarcinoma or peroxisome proliferation in rodents. These drugs were derivatives of fibric acid, and they included clofibrate, bezafibrate, and fenofibrate. However, such toxicity has never(More)
Nitric oxide is becoming an increasingly important signalling molecule implicated in a growing number of physiological and pathophysiological processes. Moreover, with the recent advances in nitric oxide biochemistry, many well known drugs have been shown to act totally or partially by modulating NO metabolism with varying therapeutic results. The classic(More)
Peroxisome proliferator activated receptors (PPARs) are a class of nuclear receptors involved in lipid and glucidic metabolism, immune regulation, and cell differentiation. Many of their biological activities have been studied by using selective synthetic activators (mainly fibrates and thiazolidinediones) which have been already employed in therapeutic(More)
In addition to their well-known critical role in energy metabolism, mitochondria are now recognized as the location where various catabolic and anabolic processes, calcium fluxes, various oxygen-nitrogen reactive species, and other signal transduction pathways interact to maintain cell homeostasis and to mediate cellular responses to different stimuli. It(More)
BACKGROUND The radio- and chemotherapeutics currently used for the treatment of cancer are widely known to be characterized by a low therapeutic index. An interesting approach to overcoming some of the limits of these techniques is the exploitation of the so-called Warburg effect, which typically characterizes neoplastic cells. Interestingly, this feature(More)
Experimental hyperoxia represents a suitable in vitro model to study some pathogenic mechanisms related to oxidative stress. Moreover, it allows the investigation of the molecular pathophysiology underlying oxygen therapy and toxicity. In this study, a modified experimental set up was adopted to accomplish a model of moderate hyperoxia (50% O(2), 96 h(More)
Peroxisome proliferator activated receptors (PPARs) are a class of nuclear receptors now actively investigated for their involvement in lipid and glucidic metabolism, immune regulation and cell differentiation. Drugs binding and activating PPARs are therefore attracting attention for their potential therapeutic role in various diseases like type 2 diabetes,(More)
Aroyl-pyrrole-hydroxy-amides (APHAs) are a new class of synthetic HDAC inhibitors recently described by us. Through three different docking procedures we designed, synthesized, and tested two new isomers of APHA lead compound 3-(4-benzoyl-1-methyl-1H-pyrrol-2-yl)-N-hydroxy-2-propenamide (1), compounds 3 and 4, characterized by different insertions of(More)