Learn More
Astrocyte death may occur in neurodegenerative disorders and complicates the outcome of brain ischemia, a condition associated with high extracellular levels of adenosine and glutamate. We show that pharmacological activation of A(1) adenosine and mGlu3 metabotropic glutamate receptors with N(6)-chlorocyclopentyladenosine (CCPA) and(More)
Parkinson's disease (PD) is characterized by progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc) caused by an abnormal rate of apoptosis. Endogenous stem cells in the adult mammalian brain indicate an innate potential for regeneration and possible resource for neuroregeneration in PD. We previously showed that(More)
Astrocytes are involved in multiple brain functions in physiological conditions, participating in neuronal development, synaptic activity and homeostatic control of the extracellular environment. They also actively participate in the processes triggered by brain injuries, aimed at limiting and repairing brain damages. Purines may play a significant role in(More)
Brain ischemia stimulates release from astrocytes of adenine-based purines, particularly adenosine, which is neuroprotective. Guanosine, which has trophic properties that may aid recovery following neurological damage, is present in high local concentrations for several days after focal cerebral ischemia. We investigated whether guanine-based purines, like(More)
Treatment of rat astrocyte cultures with 2'- and 3'-O-(4-benzoylbenzoyl)-adenosine 5'-triphosphate (BzATP), a P2X7 agonist, but not with adenosine 5-[alpha, beta methylene] triphosphate (alpha, beta meATP), a P2X agonist, increased influx of extracellular Ca2+ and [Ca2+]i. Lucifer yellow, a small molecule which permeates P2X7 receptor-induced pores, entered(More)
Spinal cord injury results in progressive waves of secondary injuries, cascades of noxious pathological mechanisms that substantially exacerbate the primary injury and the resultant permanent functional deficits. Secondary injuries are associated with inflammation, excessive cytokine release, and cell apoptosis. The purine nucleoside guanosine has(More)
The transition of prion protein from a mainly alpha-structured isoform (PrPC) to a beta sheet-containing protein (PrPSc) represents a major pathogenetic mechanism in prion diseases. To study the role of PrP structural conformation in prion-dependent neurodegeneration, we analysed the neurotoxicity of PrP in alpha and beta conformations, using a recombinant(More)
Cysteinyl-leukotrienes (cys-LTs), potent mediators in inflammatory diseases, are produced by nervous tissue, but their cellular source and role in the brain are not very well known. In this report we have demonstrated that rat cultured astrocytes express the enzymes (5'-lipoxygenase and LTC(4) synthase) required for cys-LT production, and release cys-LTs in(More)
After ischemic stroke, early thrombolytic therapy to reestablish tissue perfusion improves outcome but triggers a cascade of deleterious cellular and molecular events. Using a collaborative approach, our groups examined the effects of guanosine (Guo) in response to ischemic reperfusion injury in vitro and in vivo. In a transient middle cerebral artery(More)
Electrical stimulation of rat hippocampal slices evoked the release of excitatory amino acids and purines, as reflected by a time-dependent increase in the extracellular levels of glutamate and adenosine, as well as by the increased efflux of radioactivity in slices preloaded with both [14C]glutamate and [3H]adenosine. The evoked release of excitatory amino(More)