#### Filter Results:

- Full text PDF available (7)

#### Publication Year

1998

2007

- This year (0)
- Last 5 years (0)
- Last 10 years (1)

#### Publication Type

#### Co-author

#### Journals and Conferences

#### Key Phrases

Learn More

- Patrik Nordbeck
- 1998

In this paper we generalize some basic applications of Grr obner bases in commutative polynomial rings to the non-commutative case. We deene a non-commutative elimination order. Methods of nding the intersection of two ideals are given. If both the ideals are monomial we deduce a nitely written basis for their intersection. We nd the kernel of a… (More)

- Patrik Nordbeck
- ISSAC
- 1998

Canonical bases, also called SAGBI bases, for subalgebras of the non-commutative polynomial ring are investigated. The process of subalgebra reduction is deened. Methods, including generalizations of the standard Grr obner bases techniques , are developed for the test whether bases are canonical, and for the completion procedure of constructing canonical… (More)

- Patrik Nordbeck
- J. Symb. Comput.
- 2002

Polynomial composition is the operation of replacing the variables in a polynomial with other polynomials. In this paper we give a sufficient and necessary condition on a set Θ of polynomials to assure that the set F • Θ of composed polynomials is a SAGBI basis whenever F is.

- Patrik Nordbeck
- The Computer Science Journal of Moldova
- 1999

We introduce canonical bases for subalgebras of quotients of the commutative and non-commutative polynomial ring. The usual theory for Gröbner bases and its counterpart for subalge-bras of polynomial rings, also called SAGBI bases, are combined to obtain a tool for computation in subalgebras of factor algebras.

Preface " Trying is the first step towards failure. " Homer Simpson This thesis deals with computational methods in algebra, mainly focusing on the concept of Gröbner and SAGBI bases in non-commutative algebras. The theory of these bases is constructive in the meaning that the purpose is to provide methods for solving specific problems. As the reader will… (More)

- Patrik Nordbeck
- Applicable Algebra in Engineering, Communication…
- 2001

We investigate, for quotients of the non-commutative polynomial ring, a property that implies finiteness of Gröbner bases computation, and examine its connection with Noetherianity. We propose a Gröbner bases theory for our factor algebras, of particular interest for one-sided ideals, and show a few applications, e.g. how to compute (one-sided) syzygy… (More)

- Jonas Månsson, Patrik Nordbeck
- J. Symb. Comput.
- 2002

In this paper we introduce the concept of bi-automaton algebras, generalizing the automaton algebras previously defined by Ufnarovski. A bi-automaton algebra is a quotient of the free algebra, defined by a binomial ideal admitting a Gröbner basis which can be encoded as a regular set; we call such a Gröbner basis regular. We give several examples of… (More)

- Patrik Nordbeck
- 2007

We introduce canonical bases for subalgebras of quotients of the commutative and non-commutative polynomial ring. A more complete exposition can be found in 4]. Canonical bases for subalgebras of the commutative polynomial ring were introduced by Kapur and Madlener (see 2]), and independently by Robbiano and Sweedler ((5]). Some notes on the non-commutative… (More)

- Jonas Månsson, Patrik Nordbeck
- Applicable Algebra in Engineering, Communication…
- 2005

An important tool for studying standard finitely presented algebras is the Ufnarovski graph. In this paper we extend the use of the Ufnarovski graph to automaton algebras, introducing the generalized Ufnarovski graph. As an application, we show how this construction can be used to test Noetherianity of automaton algebras.

- ‹
- 1
- ›