Patrik Nordbeck

Learn More
Polynomial composition is the operation of replacing the variables in a polynomial with other polynomials. In this paper we give a sufficient and necessary condition on a set Θ of polynomials to assure that the set F • Θ of composed polynomials is a SAGBI basis whenever F is.
We investigate, for quotients of the non-commutative polynomial ring, a property that implies finiteness of Gröbner bases computation, and examine its connection with Noetherianity. We propose a Gröbner bases theory for our factor algebras, of particular interest for one-sided ideals, and show a few applications, e.g. how to compute (one-sided) syzygy(More)
In this paper we introduce the concept of bi-automaton algebras, generalizing the automaton algebras previously defined by Ufnarovski. A bi-automaton algebra is a quotient of the free algebra, defined by a binomial ideal admitting a Gröbner basis which can be encoded as a regular set; we call such a Gröbner basis regular. We give several examples of(More)
An important tool for studying standard finitely presented algebras is the Ufnarovski graph. In this paper we extend the use of the Ufnarovski graph to automaton algebras, introducing the generalized Ufnarovski graph. As an application, we show how this construction can be used to test Noetherianity of automaton algebras.
  • 1