Learn More
A simple labeling approach is presented based on protein expression in [1-(13)C]- or [2-(13)C]-glucose containing media that produces molecules enriched at methyl carbon positions or backbone C(alpha) sites, respectively. All of the methyl groups, with the exception of Thr and Ile(delta1) are produced with isolated (13)C spins (i.e., no (13)C-(13)C one bond(More)
Protein-folding intermediates have been implicated in amyloid fibril formation involved in neurodegenerative disorders. However, the structural mechanisms by which intermediates initiate fibrillar aggregation have remained largely elusive. To gain insight, we used relaxation dispersion nuclear magnetic resonance spectroscopy to determine the structure of a(More)
Site-specific 13C labeling offers a desirable means of eliminating unwanted relaxation pathways and coherent magnetization transfer in NMR relaxation experiments. Here we use [1-13C]-glucose as the sole carbon source in the growth media for protein overexpression in Escherichia coli. The approach results in specific incorporation of 13C at isolated(More)
MinE is required for the dynamic oscillation of Min proteins that restricts formation of the cytokinetic septum to the midpoint of the cell in gram negative bacteria. Critical for this oscillation is MinD-binding by MinE to stimulate MinD ATP hydrolysis, a function that had been assigned to the first ∼30 residues in MinE. Previous models based on the(More)
BACKGROUND The AKT/mTORC1/S6K pathway is frequently overstimulated in breast cancer, constituting a promising therapeutic target. The benefit from mTOR inhibitors varies, likely as a consequence of tumour heterogeneity, and upregulation of several compensatory feed-back mechanisms. The mTORC1 downstream effectors S6K1, S6K2, and 4EBP1 are amplified and(More)
Inhibition of the ternary protein complex of the synaptic scaffolding protein postsynaptic density protein-95 (PSD-95), neuronal nitric oxide synthase (nNOS), and the N-methyl-D-aspartate (NMDA) receptor is a potential strategy for treating ischemic brain damage, but high-affinity inhibitors are lacking. Here we report the design and synthesis of a novel(More)
Several homeobox transcription factors, such as HOXB3 and HOXB4, have been implicated in regulation of hematopoiesis. In support of this, studies show that overexpression of HOXB4 strongly enhances hematopoietic stem cell regeneration. Here we find that mice deficient in both Hoxb3 and Hoxb4 have defects in endogenous hematopoiesis with reduced cellularity(More)
Carr-Purcell-Meiboom-Gill relaxation dispersion NMR spectroscopy has evolved into a powerful approach for the study of low populated, invisible conformations of biological molecules. One of the powerful features of the experiment is that chemical shift differences between the exchanging conformers can be obtained, providing structural information about(More)
Recent studies show that several Hox transcription factors are important for regulation of proliferation and differentiation in hematopoiesis. Among these is H0XA10, which is selectively expressed at high levels in the most primitive subpopulation of human CD34(+) bone marrow cells. When overexpressed, H0XA10 increases the proliferation of early progenitor(More)
A pulse sequence is described for recording single-quantum (13)C-methyl relaxation dispersion profiles of (13)C-selectively labeled methyl groups in proteins that offers significant improvements in sensitivity relative to existing approaches where initial magnetization derives from (13)C polarization. Sensitivity gains in the new experiment are achieved by(More)