Learn More
Rodent somatosensory barrel cortex is organized both physiologically and anatomically in columns with a cross-sectional diameter of 100-400 microm. The underlying anatomical correlate of physiologically defined, much narrower minicolumns (20-60 microm in diameter) remains unclear. The minicolumn has been proposed to be a fundamental functional unit in the(More)
Experimental and computational techniques have been used to investigate the group I metabotropic glutamate receptor (mGluR)-mediated increase in the frequency of spinal cord network activity underlying locomotion in the lamprey. Group I mGluR activation potentiated the amplitude of NMDA-induced currents in identified motoneurons and crossed caudally(More)
Astrocytes play a key role for maintenance of brain water homeostasis, but little is known about mechanisms of short-term regulation of astrocyte water permeability. Here, we report that glutamate increases astrocyte water permeability and that the molecular target for this effect is the aquaporin-4 (AQP4) serine 111 residue, which is in a strategic(More)
To understand sensory representation in cortex, it is crucial to identify its constituent cellular components based on cell-type-specific criteria. With the identification of cell types, an important question can be addressed: to what degree does the cellular properties of neurons depend on cortical location? We tested this question using pyramidal neurons(More)
We describe here a molecular genetic approach for imaging synaptic inhibition. The thy-1 promoter was used to express high levels of Clomeleon, a ratiometric fluorescent indicator for chloride ions, in discrete populations of neurons in the brains of transgenic mice. Clomeleon was functional after chronic expression and provided non-invasive readouts of(More)
Metabotropic glutamate receptors (mGluRs) act as modulators in the CNS of vertebrates, but their role in motor pattern generation in particular is primarily unknown. The intracellular signaling mechanisms of the group I mGluRs (mGluR1 and mGluR5), and their endogenous role in regulating locomotor pattern generation have been investigated in the spinal cord(More)
The effect of metabotropic glutamate receptor (mGluR) agonists and antagonists on the spinal cord network underlying locomotion in the lamprey has been analysed. The specific group I mGluR agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) and the broad-spectrum mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) both increased the(More)
1. Different metabotropic glutamate receptors (mGluRs) can modulate synaptic transmission in different regions in the CNS, but their roles at individual synaptic connections have not been detailed. We used paired intracellular recordings from reticulospinal axons and their postsynaptic target neurons in the lamprey spinal cord to investigate the effects of(More)
The pharmacology of calcium channels involved in glutamatergic synaptic transmission from reticulospinal axons in the lamprey spinal cord was analyzed with specific agonists and antagonists of different high-voltage activated calcium channels. The N-type calcium channel blocker omega-conotoxin GVIA (omega-CgTx) induced a large decrease of the amplitude of(More)
A major synaptic input to the thalamus originates from neurons in cortical layer 6 (L6); however, the function of this cortico-thalamic pathway during sensory processing is not well understood. In the mouse whisker system, we found that optogenetic stimulation of L6 in vivo results in a mixture of hyperpolarization and depolarization in the thalamic target(More)