Learn More
Electrical and magnetic brain waves of seven subjects under three experimental conditions were recorded for the purpose of recognizing which one of seven words was processed. The analysis consisted of averaging over trials to create prototypes and test samples, to both of which Fourier transforms were applied, followed by filtering and an inverse(More)
Three stochastic eye-movement models for arithmetic and reading performance have been proposed, one for arithmetic and two for reading. Each model characterizes a real-time stochastic process in terms of fixation durations and saccadic movement, but only direction and length of saccades are considered, not acceleration or velocity. Aspects of the models(More)
The Oculomotor Geometry Reasoning Engine (OGRE) was proposed to model eye movements and visual working memory during problem solving in geometry. OGRE postulates that geometrical elements from diagrams are added to visual working memory when they are scanned. Newly-added elements overwrite elements already in memory. The model was applied to eye-movement(More)
In three experiments, electric brain waves of 19 subjects were recorded under several different experimental conditions for two purposes. One was to test how well we could recognize which sentence, from a set of 24 or 48 sentences, was being processed in the cortex. The other was to study the invariance of brain waves between subjects. As in our earlier(More)
While magnetoencephalography (MEG) is widely used to identify spatial locations of brain activations associated with various tasks, classification of single trials in stimulus-locked experiments remains an open subject. Very significant single-trial classification results have been published using electroencephalogram (EEG) data, but in the MEG case, the(More)
Electrical and magnetic brain waves of two subjects were recorded for the purpose of recognizing which one of 12 sentences or seven words auditorily presented was processed. The analysis consisted of averaging over trials to create prototypes and test samples, to each of which a Fourier transform was applied, followed by filtering and an inverse(More)
In two experiments, electric brain waves of 14 subjects were recorded under several different conditions to study the invariance of brain-wave representations of simple patches of colors and simple visual shapes and their names, the words blue, circle, etc. As in our earlier work, the analysis consisted of averaging over trials to create prototypes and test(More)
Data from three previous experiments were analyzed to test the hypothesis that brain waves of spoken or written words can be represented by the superposition of a few sine waves. First, we averaged the data over trials and a set of subjects, and, in one case, over experimental conditions as well. Next we applied a Fourier transform to the averaged data and(More)
The idea that synchronized oscillations are important in cognitive tasks is receiving significant attention. In this view, single neurons are no longer elementary computational units. Rather, coherent oscillating groups of neurons are seen as nodes of networks performing cognitive tasks. From this assumption, we develop a model of stimulus-pattern learning(More)
The activity of collections of synchronizing neurons can be represented by weakly coupled nonlinear phase oscillators satisfying Kuramoto's equations. In this article, we build such neural-oscillator models , partly based on neurophysiological evidence, to represent approximately the learning behavior predicted and confirmed in three experiments by(More)