Patrick Rose

Learn More
Twin-arginine translocation (Tat) denotes a protein transport pathway in bacteria, archaea and plant chloroplasts, which is specific for precursor proteins harbouring a characteristic twin-arginine pair in their signal sequences. Many Tat substrates receive cofactors and fold prior to translocation. For a subset of them, proofreading chaperones coordinate(More)
The twin-arginine translocation (Tat) pathway of bacteria and plant chloroplasts mediates the transmembrane transport of folded proteins, which harbour signal sequences with a conserved twin-arginine motif. Many Tat translocases comprise the three membrane proteins TatA, TatB and TatC. TatC was previously shown to be involved in recognizing twin-arginine(More)
The twin arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane of bacteria. Tat signal peptides contain a consensus motif (S/T-R-R-X-F-L-K) that is thought to play a crucial role in substrate recognition by the Tat translocase. Replacement of the phenylalanine at the +2 consensus position in the signal peptide of a(More)
The twin-arginine translocation (Tat) pathway guides fully folded proteins across membranes of bacteria, archaea and plant chloroplasts. In Escherichia coli, Tat-specific transport is executed in a still largely unknown manner by three functionally diverse membrane proteins, termed TatA, TatB, and TatC. In order to follow the intracellular distribution of(More)
We report on the experimental observation of stable double-charge discrete vortex solitons generated in hexagonal photonic lattices created optically in self-focusing nonlinear media and show that single-charge vortex solitons are unstable in analogous conditions. Subsequently, we study, both theoretically and experimentally , the existence and stability of(More)
We realize an experimental control over the topological stability of three-lobe discrete vortex solitons by modifying the symmetry of a hexagonal photonic lattice optically induced in a photorefractive crystal. By continuously deforming the lattice wave in one transverse direction, we manipulate the coupling between lattice sites and induce or inhibit the(More)
We present a highly purposive technique to optically induce periodic photonic lattices enriched with a negative defect site by using a properly designed nondiffracting (ND) beam. As the interference of two or more ND beams with adequate mutual spatial frequency relations in turn reproduces an ND beam, we adeptly superpose a hexagonal and a Bessel beam to(More)
We control the emission properties of a broad-area vertical-cavity surface emitting laser by coupling it to an external feedback cavity containing a photorefractive crystal with an optically induced photonic lattice. The periodic modulation of the refractive index serves as a tunable filter and enables the dynamic suppression of unwanted spatial(More)