Patrick R. Cushing

Learn More
The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride channel mutated in patients with cystic fibrosis. Its expression and functional interactions in the apical membrane are regulated by several PDZ (PSD-95, discs large, zonula occludens-1) proteins, which mediate protein-protein interactions, typically by binding(More)
PDZ (PSD-95/Dlg/ZO-1) binding domains often serve as cellular traffic engineers, controlling the localization and activity of a wide variety of binding partners. As a result, they play important roles in both physiological and pathological processes. However, PDZ binding specificities overlap, allowing multiple PDZ proteins to mediate distinct effects on(More)
The cystic fibrosis transmembrane conductance regulator (CFTR) is an epithelial chloride channel mutated in patients with cystic fibrosis (CF). The most prevalent CFTR mutation, ΔF508, blocks folding in the endoplasmic reticulum. Recent work has shown that some ΔF508-CFTR channel activity can be recovered by pharmaceutical modulators ("potentiators" and(More)
Cystic fibrosis (CF) is associated with loss-of-function mutations in the CF transmembrane conductance regulator (CFTR), which regulates epithelial fluid and ion homeostasis. The CFTR cytoplasmic C-terminus interacts with a number of PDZ (PSD-95/Dlg/ZO-1) proteins that modulate its intracellular trafficking and chloride-channel activity. Among these, the(More)
PDZ domain interactions are involved in signaling and trafficking pathways that coordinate crucial cellular processes. Alignment-based PDZ binding motifs identify the few most favorable residues at certain positions along the peptide backbone. However, sequences that bind the CAL (CFTR-associated ligand) PDZ domain reveal only a degenerate motif that(More)
Monoallelic RUNX1 mutations cause familial platelet disorder with predisposition for acute myelogenous leukemia (FPD/AML). Sporadic mono- and biallelic mutations are found at high frequencies in AML M0, in radiation-associated and therapy-related myelodysplastic syndrome and AML, and in isolated cases of AML M2, M5a, M3 relapse, and chronic myelogenous(More)
Together strong: Cooperative binding of organic (see picture, red) and inorganic fragments provides a strategy for the potent inhibition of protein-protein interactions. By targeting specific Lewis basic side chains in peripheral regions of the binding site for coordination to a rhodium(II) center, the affinity of otherwise weak ligands is improved.
Protein-protein interactions (PPIs) are vital for cell signaling, protein trafficking and localization, gene expression, and many other biological functions. Rational modification of PPI targets provides a mechanism to understand their function and importance. However, PPI systems often have many more degrees of freedom and flexibility than the(More)