Learn More
In this work, organic photovoltaics (OPV) with graphene electrodes are constructed where the effect of graphene morphology, hole transporting layers (HTL), and counter electrodes are presented. Instead of the conventional poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) PEDOT:PSS HTL, an alternative transition metal oxide HTL (molybdenum oxide(More)
Solution processing is a promising route for the realization of low-cost, large-area, flexible and lightweight photovoltaic devices with short energy payback time and high specific power. However, solar cells based on solution-processed organic, inorganic and hybrid materials reported thus far generally suffer from poor air stability, require an(More)
The ability to engineer interfacial energy offsets in photovoltaic devices is one of the keys to their optimization. Here, we demonstrate that improvements in power conversion efficiency may be attained for ZnO/PbS heterojunction quantum dot photovoltaics through the incorporation of a MoO(3) interlayer between the PbS colloidal quantum dot film and the(More)
The electronic properties of colloidal quantum dots (QDs) are critically dependent on both QD size and surface chemistry. Modification of quantum confinement provides control of the QD bandgap, while ligand-induced surface dipoles present a hitherto underutilized means of control over the absolute energy levels of QDs within electronic devices. Here, we(More)
We investigate the bias-stress effect in field-effect transistors (FETs) consisting of 1,2-ethanedithiol-treated PbS quantum dot (QD) films as charge transport layers in a top-gated configuration. The FETs exhibit ambipolar operation with typical mobilities on the order of μ(e) = 8 × 10(-3) cm(2) V(-1) s(-1) in n-channel operation and μ(h) = 1 × 10(-3)(More)
Vertical arrays of ZnO nanowires can decouple light absorption from carrier collection in PbS quantum dot solar cells and increase power conversion efficiencies by 35%. The resulting ordered bulk heterojunction devices achieve short-circuit current densities in excess of 20 mA cm(-2) and efficiencies of up to 4.9%.
Triplet exciton dissociation in singlet exciton fission devices with three classes of acceptors are characterized: fullerenes, perylene diimides, and PbS and PbSe colloidal nanocrystals. Using photocurrent spectroscopy and a magnetic field probe it is found that colloidal PbSe nanocrystals are the most promising acceptors, capable of efficient triplet(More)
The significant research interest in the engineering of photovoltaic (PV) structures at the nanoscale is directed toward enabling reductions in PV module fabrication and installation costs as well as improving cell power conversion efficiency (PCE). With the emergence of a multitude of nanostructured photovoltaic (nano-PV) device architectures, the question(More)
PbS colloidal quantum dot heterojunction solar cells have shown significant improvements in performance, mostly based on devices that use high-temperature annealed transition metal oxides to create rectifying junctions with quantum dot thin films. Here, we demonstrate a solar cell based on the heterojunction formed between PbS colloidal quantum dot layers(More)