Learn More
We address the problem of image search on a very large scale, where three constraints have to be considered jointly: the accuracy of the search, its efficiency, and the memory usage of the representation. We first propose a simple yet efficient way of aggregating local image descriptors into a vector of limited dimension, which can be viewed as a(More)
This paper addresses the problem of large-scale image search. Three constraints have to be taken into account: search accuracy, efficiency, and memory usage. We first present and evaluate different ways of aggregating local image descriptors into a vector and show that the Fisher kernel achieves better performance than the reference bag-of-visual words(More)
Color-based trackers recently proposed in [3,4,5] have been proved robust and versatile for a modest computational cost. They are especially appealing for tracking tasks where the spatial structure of the tracked objects exhibits such a dramatic variability that trackers based on a space-dependent appearance reference would break down very fast. Trackers in(More)
The problem of interactive foreground/background segmentation in still images is of great practical importance in image editing. The state of the art in interactive segmentation is probably represented by the graph cut algorithm of Boykov and Jolly (ICCV 2001). Its underlying model uses both colour and contrast information, together with a strong prior for(More)
A new algorithm is proposed for removing large objects from digital images. The challenge is to fill in the hole that is left behind in a visually plausible way. In the past, this problem has been addressed by two classes of algorithms: (i) " texture synthesis " algorithms for generating large image regions from sample textures, and (ii) " inpainting "(More)
— The effectiveness of probabilistic tracking of objects in image sequences has been revolutionized by the development of particle filtering. Whereas Kalman filters are restricted to Gaussian distributions, particle filters can propagate more general distributions, albeit only approximately. This is of particular benefit in visual tracking because of the(More)
We address recognition and localization of human actions in realistic scenarios. In contrast to the previous work studying human actions in controlled settings, here we train and test algorithms on real movies with substantial variation of actions in terms of subject appearance, motion, surrounding scenes, viewing angles and spatio-temporal extents. We(More)
In this paper we present Monte Carlo methods for multi-target tracking and data association. The methods are applicable to general non-linear and non-Gaussian models for the target dynamics and measurement likelihood. We provide efficient solutions to two very pertinent problems: the data association problem that arises due to unlabelled measurements in the(More)
Noncasual Markov (or energy-based) models are widely used in early vision applications for the representation of images in high-dimensional inverse problems. Due to their noncausal nature, these models generally lead to iterative inference algorithms that are computationally demanding. In this paper, we consider a special class of nonlinear Markov models(More)