Patrick O. Glauner

Learn More
—Non-technical losses (NTL) such as electricity theft cause significant harm to our economies, as in some countries they may range up to 40% of the total electricity distributed. Detecting NTLs requires costly on-site inspections. Accurate prediction of NTLs for customers using machine learning is therefore crucial. To date, related research largely ignore(More)
Except where reference is made in the text of this thesis, this thesis contains no material published elsewhere or extracted in whole or in part from a thesis presented by me for another degree or diploma. No other person's work has been used without due acknowledgement in the main text of the thesis. This thesis has not been submitted for the award of any(More)
—Detection of non-technical losses (NTL) which include electricity theft, faulty meters or billing errors has attracted increasing attention from researchers in electrical engineering and computer science. NTLs cause significant harm to the economy, as in some countries they may range up to 40% of the total electricity distributed. The predominant research(More)
Electricity theft occurs around the world in both developed and developing countries and may range up to 40% of the total electricity distributed. More generally, electricity theft belongs to non-technical losses (NTL), which occur during the distribution of electricity in power grids. In this paper, we build features from the neighborhood of customers. We(More)
—Non-technical losses (NTL) occur during the distribution of electricity in power grids and include, but are not limited to, electricity theft and faulty meters. In emerging countries, they may range up to 40% of the total electricity distributed. In order to detect NTLs, machine learning methods are used that learn irregular consumption patterns from(More)
Inspired by recent successes of deep learning in computer vision, we propose a novel application of deep convolutional neural networks to facial expression recognition, in particular smile recognition. A smile recognition test accuracy of 99.45% is achieved for the Denver Intensity of Spontaneous Facial Action (DISFA) database, significantly outperforming(More)
—Electricity theft is a major problem around the world in both developed and developing countries and may range up to 40% of the total electricity distributed. More generally, electricity theft belongs to non-technical losses (NTL), which are losses that occur during the distribution of electricity in power grids. In this paper, we build features from the(More)
Invenio is a free comprehensive web-based document repository and digital library software suite originally developed at CERN. It can serve a variety of use cases from an institutional repository or digital library to a web journal. In order to fully use full-text documents for efficient search and ranking, Solr was integrated into Invenio through a generic(More)