Patrick L. Tierney

Learn More
To study the interplay between hippocampus and medial prefrontal cortex (Pfc) and its importance for learning and memory consolidation, we measured the coherence in theta oscillations between these two structures in rats learning new rules on a Y maze. Coherence peaked at the choice point, most strongly after task rule acquisition. Simultaneously, Pfc(More)
The hippocampus and prefrontal cortex (PFC), two structures implicated in learning and memory processes, are linked by a direct hippocampo-prefrontal pathway. It has been shown that PFC pyramidal cells receive monosynaptic excitatory inputs from the hippocampus and, in this study, we sought to determine the influence of the hippocampus on PFC interneurons(More)
Predictions about future rewarding events have a powerful influence on behaviour. The phasic spike activity of dopamine-containing neurons, and corresponding dopamine transients in the striatum, are thought to underlie these predictions, encoding positive and negative reward prediction errors. However, many behaviours are directed towards distant goals, for(More)
Multisecond oscillations in firing rate with periods in the range of 2-60 s (mean, 20-35 s) are present in 50-90% of spike trains from basal ganglia neurons recorded from locally anesthetized, immobilized rats. To determine whether these periodic oscillations are associated with similar periodicities in cortical activity, transcortical(More)
Previous studies from this laboratory have shown that many neurons in the basal ganglia have multisecond (<0.5 Hz) periodicities in firing rate in awake rats. The frequency and regularity of these oscillations are significantly increased by systemically injected dopamine (DA) agonists. Because oscillatory activity should have greater functional impact if(More)
Midbrain dopamine (DA) neurons project to pyramidal cells and interneurons of the prefrontal cortex (PFC). At the microcircuit level, interneurons gate inputs to a network and regulate/pattern its outputs. Whereas several in vitro studies have examined the role of DA on PFC interneurons, few in vivo data are available. In this study, we show that DA(More)
Gestational day 17 methylazoxymethanol (MAM) treatment has been shown to reproduce, in rodents, some of the alterations in cortical and mesolimbic circuitries thought to contribute to schizophrenia. We characterized the behavior of MAM animals in tasks dependent on these circuitries to see what behavioral aspects of schizophrenia the model captures. We then(More)
In the weeks following unilateral peripheral nerve injury, the deprived primary somatosensory cortex (SI) responds to stimulation of the ipsilateral intact limb as demonstrated by functional magnetic resonance imaging (fMRI) responses. The neuronal basis of these responses was studied by using high-resolution fMRI, in vivo electrophysiological recordings,(More)
A major goal of neuroscience is to understand the functions of networks of neurons in cognition and behavior. Recent work has focused on implanting arrays of ∼100 immovable electrodes or smaller numbers of individually adjustable electrodes, designed to target a few cortical areas. We have developed a recording system that allows the independent movement of(More)
Joseph Feingold,* Theresa M. Desrochers,* Naotaka Fujii,* Ray Harlan, Patrick L. Tierney, Hideki Shimazu, Ken-ichi Amemori, and Ann M. Graybiel McGovern Institute for Brain Research, Harvard-MIT Division of Health, Sciences and Technology, and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts; Brain Science(More)
  • 1