Patrick K Tumwebaze

Learn More
We evaluated markers of artemisinin resistance in Plasmodium falciparum isolated in Kampala in 2014. By standard in vitro assays, all isolates were highly sensitive to dihydroartemisinin (DHA). By the ring-stage survival assay, after a 6-h DHA pulse, parasitemia was undetectable in 40 of 43 cultures at 72 h. Two of 53 isolates had nonsynonymous(More)
The distribution of the enzymopathy glucose-6-phosphate dehydrogenase (G6PD) deficiency is linked to areas of high malaria endemicity due to its association with protection from disease. G6PD deficiency is also identified as the cause of severe haemolysis following administration of the anti-malarial drug primaquine and further use of this drug will likely(More)
Changing treatment practices may be selecting for changes in the drug sensitivity of malaria parasites. We characterized ex vivo drug sensitivity and parasite polymorphisms associated with sensitivity in 459 Plasmodium falciparum samples obtained from subjects enrolled in two clinical trials in Tororo, Uganda, from 2010 to 2013. Sensitivities to chloroquine(More)
Malaria remains a major public health problem, and its control has been hampered by drug resistance. For a number of drugs, Plasmodium falciparum single nucleotide polymorphisms (SNPs) are associated with altered drug sensitivity and can be used as markers of drug resistance. Several techniques have been studied to assess resistance markers. The most widely(More)
Polymorphisms in the Plasmodium falciparum multidrug resistance 1 (pfmdr1) gene impact sensitivity to multiple antimalarials. In Africa, polymorphisms at N86Y and D1246Y are common and have various impacts on sensitivity to different drugs. To gain insight into the fitness consequences of these polymorphisms, we cultured parasites isolated from children(More)
We assessed Plasmodium falciparum drug resistance markers in parasites collected in 2012, 2013, and 2015 at 3 sites in Uganda. The prevalence and frequency of parasites with mutations in putative transporters previously associated with resistance to aminoquinolines, but increased sensitivity to lumefantrine (pfcrt 76T; pfmdr1 86Y and 1246Y), decreased(More)
Dihydroartemisinin-piperaquine (DP) offers prolonged protection against malaria, but its impact on Plasmodium falciparum drug sensitivity is uncertain. In a trial of intermittent preventive treatment in schoolchildren in Tororo, Uganda, in 2011 to 2012, monthly DP for 1 year decreased the incidence of malaria by 96% compared to placebo; DP once per school(More)
Dihydroartemisinin-piperaquine (DP) has demonstrated excellent efficacy for the treatment and prevention of malaria in Uganda. However, resistance to both components of this regimen has emerged in Southeast Asia. The efficacy of artemether-lumefantrine, the first-line regimen to treat malaria in Uganda, has also been excellent, but continued pressure may(More)
Plasmodium falciparum genetic polymorphisms that mediate altered drug sensitivity may impact upon virulence. In a cross-sectional study, Ugandan children with infections mutant at pfcrt K76T, pfmdr1 N86Y, or pfmdr1 D1246Y had about one-fourth the odds of symptomatic malaria compared to those with infections with wild type (WT) sequences. However, results(More)
Background In a recent trial of intermittent preventive treatment in pregnancy (IPTp) in Uganda, dihydroartemisinin-piperaquine (DP) was superior to sulfadoxine-pyrimethamine (SP) in preventing maternal and placental malaria. Methods We compared genotypes using sequencing, fluorescent microsphere, and qPCR assays at loci associated with drug resistance in(More)