Patrick J. Haley

Learn More
We develop and illustrate an efficient but rigorous methodology that predicts the time-optimal paths of ocean vehicles in continuous dynamic flows. The goal is to best utilize or avoid currents, without limitation on these currents or on the number of vehicles. The methodology employs a new modified level set equation to evolve a front from the starting(More)
Physical and biogeochemical ocean dynamics can be intermittent and highly variable, and involve interactions on multiple scales. In general, the oceanic fields, processes and interactions that matter thus vary in time and space. For efficient forecasting, the structures and parameters of models must evolve and respond dynamically to new data injected into(More)
Error Subspace Statistical Estimation (ESSE), an uncertainty prediction and data assimilation methodology employed for real-time ocean forecasts, is based on a characterization and prediction of the largest uncertainties. This is carried out by evolving an error subspace of variable size. We use an ensemble of stochastic model simulations, initialized based(More)
We present a novel stochastic optimization method to compute energy–optimal paths, among all time–optimal paths, for vehicles traveling in dynamic unsteady currents. The method defines a stochastic class of instantaneous nominal vehicle speeds and then obtains the energy–optimal paths within the class by minimizing the total time– integrated energy usage(More)
Uncertainty prediction for ocean and climate predictions is essential for multiple applications today. Many-Task Computing can play a significant role in making such predictions feasible. In this manuscript, we focus on ocean uncertainty prediction using the Error Subspace Statistical Estimation (ESSE) approach. In ESSE, uncertainties are represented by an(More)
Autonomous underwater vehicles (AUVs) are used to execute an increasingly challenging set of missions in commercial, environmental and defense industries. The resources available to the AUV in service of these missions are typically a limited power supply and onboard sensing of its local environment. Optimal path planning is needed to maximize the chances(More)
The science of autonomy is the systematic development of fundamental knowledge about autonomous decision making and task completing in the form of testable autonomous methods, models and systems. In ocean applications, it involves varied disciplines that are not often connected. However, marine autonomy applications are rapidly growing, both in numbers and(More)
Data-constrained dynamical ocean modeling for the purpose of detailed forecasting and prediction continues to evolve and improve in quality. Modeling methods and computational capabilities have each improved. The result is that mesoscale phenomena can be modeled with skill, given sufficient data. However, many submesoscale features are less well modeled and(More)
We report the results of sea exercises that demonstrate the real-time capabilities of our fundamental time-optimal path planning theory and software with real ocean vehicles. The exercises were conducted with REMUS 600 Autonomous Underwater Vehicles (AUVs) in the Buzzards Bay and Vineyard Sound Regions on 21 October and 6 December 2016. Two tests were(More)
We present the spatial and temporal variability of the acoustic field in Dabob Bay during the PLUSNet07 Exercise. The study uses a 4-D data-assimilative numerical ocean model to provide input to an acoustic propagation model. The ocean physics models (primitive-equations and tidal models), with CTD data assimilation, provided ocean predictions in the(More)