Patrick Humbert

Learn More
The neoplastic tumour suppressors, Scribble, Dlg and Lgl, originally discovered in the vinegar fly Drosophila melanogaster, are currently being actively studied for their potential role in mammalian tumourigenesis. In Drosophila, these tumour suppressors function in a common genetic pathway to regulate apicobasal cell polarity and also play important roles(More)
Activating mutations in genes of the Ras-mitogen-activated protein kinase (MAPK) pathway occur in approximately 30% of all human cancers; however, mutation of Ras alone is rarely sufficient to induce tumour development. Scribble is a polarity regulator recently isolated from a Drosophila screen for events that cooperate with Ras mutation to promote tumour(More)
E2F is a family of transcription factors that regulate both cellular proliferation and differentiation. To establish the role of E2F3 in vivo, we generated an E2f3 mutant mouse strain. E2F3-deficient mice arise at one-quarter of the expected frequency, demonstrating that E2F3 is important for normal development. To determine the molecular consequences of(More)
The retinoblastoma protein (pRB) plays a key role in the control of normal development and proliferation through the regulation of the E2F transcription factors. We generated a mutant mouse model to assess the in vivo role of the predominant E2F family member, E2F4. Remarkably, loss of E2F4 had no detectable effect on either cell cycle arrest or(More)
Dlg (Discs large), Scrib (Scribble) and Lgl (Lethal giant larvae) are evolutionarily conserved components of a common genetic pathway that link the seemingly disparate functions of cell polarity and cell proliferation in epithelial cells. dlg, scrib and lgl have been identified as tumour suppressor genes in Drosophila, mutations of which cause similar(More)
T cell shape is dictated by the selective recruitment of molecules to different regions of the cell (polarity) and is integral to every aspect of T cell function, from migration to cytotoxicity. This study describes a mechanism for the regulation of T cell polarity. We show that T cells contain a network of asymmetrically distributed proteins with the(More)
Altered expression of human Scribble is associated with invasive epithelial cancers, however, its role in tumour development remains unclear. Mutations in Drosophila Scribble result in loss of polarity, overproliferation and 3D-tumourous overgrowth of epithelial cells. Using complementation studies in Drosophila we recently demonstrated that expression of(More)
The mammalian PCP pathway regulates diverse developmental processes requiring coordinated cellular movement, including neural tube closure and cochlear stereociliary orientation. Here, we show that epidermal wound repair is regulated by PCP signaling. Mice carrying mutant alleles of PCP genes Vangl2, Celsr1, PTK7, and Scrb1, and the transcription factor(More)
Asymmetric cell division is a potential means by which cell fate choices during an immune response are orchestrated. Defining the molecular mechanisms that underlie asymmetric division of T cells is paramount for determining the role of this process in the generation of effector and memory T cell subsets. In other cell types, asymmetric cell division is(More)
Formation of the epithelial barrier and apico-basal cell polarity represent two characteristics and mutually dependent features of differentiated epithelial monolayers. They are controlled by special adhesive structures, tight junctions (TJs), and polarity protein complexes that define the apical and the basolateral plasma membrane. The functional interplay(More)