Patrick Charbonneau

Learn More
This article describes how the dimensions of nanowires affect the transmittance and sheet resistance of a random nanowire network. Silver nanowires with independently controlled lengths and diameters were synthesized with a gram-scale polyol synthesis by controlling the reaction temperature and time. Characterization of films composed of nanowires of(More)
This paper presents a series of helioseismic inversions aimed at determining with the highest possible conÐdence and accuracy the structure of the rotational shear layer (the tachocline) located beneath the base of the solar convective envelope. We are particularly interested in identifying features of the inversions that are robust properties of the data,(More)
The mechanical properties of jammed packings depend sensitively on their detailed local structure. Here we provide a complete characterization of the pair correlation close to contact and of the force distribution of jammed frictionless spheres. In particular we discover a set of new scaling relations that connect the behavior of particles bearing small(More)
In this set of lecture notes we review the mode-coupling theory of the glass transition from several perspectives. First, we derive mode-coupling equations for the description of density fluctuations from microscopic considerations with the use the Mori-Zwanzig projection operator technique. We also derive schematic mode-coupling equations of a similar form(More)
In this paper we extend the earlier treatment of out-of-equilibrium mesoscopic fluctuations in glassy systems in several significant ways. First, via extensive simulations, we demonstrate that models of glassy behavior without quenched disorder display scalings of the probability of local two-time correlators that are qualitatively similar to that of models(More)
Glasses are amorphous solids whose constituent particles are caged by their neighbours and thus cannot flow. This sluggishness is often ascribed to the free energy landscape containing multiple minima (basins) separated by high barriers. Here we show, using theory and numerical simulation, that the landscape is much rougher than is classically assumed. Deep(More)
X-ray crystallography is the predominant method for obtaining atomic-scale information about biological macromolecules. Despite the success of the technique, obtaining well diffracting crystals still critically limits going from protein to structure. In practice, the crystallization process proceeds through knowledge-informed empiricism. Better(More)
Motivated by a recently identified severe discrepancy between a static and a dynamic theory of glasses, we numerically investigate the behavior of dense hard spheres in spatial dimensions 3 to 12. Our results are consistent with the static replica theory, but disagree with the dynamic mode-coupling theory, indicating that key ingredients of high-dimensional(More)