Patrick Carrier

Learn More
PURPOSE The reepithelialization of the corneal surface is an important process for restoring the imaging properties of this tissue. The purpose of the present study was to characterize and validate a new human in vitro three-dimensional corneal wound healing model by studying the expression of basement membrane components and integrin subunits that play(More)
The organization of cells and extracellular matrix (ECM) in native tissues plays a crucial role in their functionality. However, in tissue engineering, cells and ECM are randomly distributed within a scaffold. Thus, the production of engineered-tissue with complex 3D organization remains a challenge. In the present study, we used contact guidance to control(More)
PURPOSE Regeneration of the corneal epithelium could be severely impaired in patients suffering from limbal stem cell deficiency. The purpose of this study was to evaluate the restoration of the corneal epithelium by grafting onto denuded corneas autologous limbal cells cultured on fibrin gels. The rabbit model was chosen to allow the microscopic evaluation(More)
PURPOSE The purpose of this study was to produce and characterize human tissue-engineered corneas reconstructed using all three corneal cell types (epithelial, stromal, and endothelial cells) by the self-assembly approach. METHODS Fibroblasts cultured in medium containing serum and ascorbic acid secreted their own extracellular matrix and formed sheets(More)
PURPOSE The authors conducted in vivo assessment of corneal endothelial toxicity of air and SF6 in the feline model. This research was motivated by the increased use of air in anterior segment surgery in human subjects. METHODS This was a prospective masked study. The eyes of 16 healthy adult cats were randomly assigned for the injection of 0.7 mL air(More)
PURPOSE To optimize the growth condition of porcine corneal endothelial cells (PCEC), we evaluated the effect of coculturing with a feeder layer (irradiated 3T3 fibroblasts) with the addition of various exogenous factors, such as epidermal growth factor (EGF), nerve growth factor (NGF), bovine pituitary extract (BPE), ascorbic acid, and chondroitin sulfate,(More)
PURPOSE To achieve a better understanding of the involvement of phospholipases in the inflammation and wound-healing processes in human corneal epithelial cells (HCECs), expression of phospholipase A2s (PLA2s) and phospholipase Cs (PLCs) was examined in the human corneal epithelium. METHODS Specific primers were designed for RT-PCR amplification of the(More)
PURPOSE It has been suggested that the epithelioid morphology and high aggressiveness that is typical of the uveal melanoma cell line TP17 is dependent on the loss of alpha5beta1 integrin expression at the cell surface. The purpose of the current study was to test this hypothesis in the TP17 cell line and investigate the role this integrin may play in the(More)
Tissue engineering is progressing rapidly. Bioengineered substitutes are already available for experimental applications and some clinical purposes such as skin replacement. This review focuses on the development of reconstructed human cornea in vitro by tissue engineering. Key elements to consider in the corneal reconstruction, such as the source for(More)
PURPOSE Primary cultured epithelial cells are widely used for the production of tissue-engineered substitutes and are gaining popularity as a model for gene expression studies. However, as such cells are passaged in culture, they often lose their ability to proliferate by progressing toward terminal cell differentiation, a process likely to be determined by(More)