Patrick Butler

Learn More
We describe the design, implementation, and evaluation of EMBERS, an automated, 24x7 continuous system for forecasting civil unrest across 10 countries of Latin America using open source indicators such as tweets, news sources, blogs, economic indicators, and other data sources. Unlike retrospective studies, EMBERS has been making forecasts into the future(More)
Reconstruction of shredded documents remains a significant challenge. Creating a better document reconstruction system enables not just recovery of information accidentally lost but also understanding our limitations against adversaries’ attempts to gain access to information. Existing approaches to reconstructing shredded documents adopt either a(More)
The standardization and wider use of electronic medical records (EMR) creates opportunities for better understanding patterns of illness and care within and across medical systems. Our interest is in the temporal history of event codes embedded in patients' records, specifically investigating frequently occurring sequences of event codes across patients. In(More)
Modern epidemiological forecasts of common illnesses, such as the flu, rely on both traditional surveillance sources as well as digital surveillance data. However, most published studies have been retrospective. Concurrently, the reports about flu activity generally lags by several weeks and even when published are revised for several weeks more. We posit(More)
Developed under the Intelligence Advanced Research Project Activity Open Source Indicators program, Early Model Based Event Recognition using Surrogates (EMBERS) is a large-scale big data analytics system for forecasting significant societal events, such as civil unrest events on the basis of continuous, automated analysis of large volumes of publicly(More)
Prospective memory (PM) involves remembering to perform an action in the future. The current study applies a multinomial model to investigate the contribution of individual differences in personality, as well as individual differences in working memory span, to performance in an event-based PM task. The model includes a parameter P that measures the(More)
Computational neuroscience is being revolutionized with the advent of multi-electrode arrays that provide real-time, dynamic perspectives into brain function. Mining neuronal spike streams from these chips is critical to understand the firing patterns of neurons and gain insight into the underlying cellular activity. To address this need, we present a(More)
Attackers, in particular botnet controllers, use stealthy messaging systems to set up large-scale command and control. To systematically understand the potential capability of attackers, we investigate the feasibility of using domain name service (DNS) as a stealthy botnet command-and-control channel. We describe and quantitatively analyze several(More)
Financial markets are quite sensitive to unanticipated news and events. Identifying the effect of news on the market is a challenging task. In this demo, we present Forex-foreteller (FF) which mines news articles and makes forecasts about the movement of foreign currency markets. The system uses a combination of language models, topic clustering, and(More)