Learn More
Humans learn and remember motor skills to permit adaptation to a changing environment. During adaptation, the brain develops new sensory-motor relationships that become stored in an internal model (IM) that may be retained for extended periods. How the brain learns new IMs and transforms them into long-term memory remains incompletely understood since prior(More)
Fronto-striatal circuitry interacts with the midbrain dopaminergic system to mediate the learning of stimulus-response associations, and these associations often guide everyday actions, but the precise role of these circuits in forming and consolidating rules remains uncertain. A means to examine basal ganglia circuit contributions to associative motor(More)
Generalization represents the ability to transfer what has been learned in one context to another context beyond limited experience. Because acquired motor representations often have to be reinstated in a different or novel environment, generalization is a crucial part of visuomotor learning. In daily life, training for new motor skills often occurs in a(More)
Humans commonly use their hands to move and to interact with their environment by processing visual and proprioceptive information to determine the location of a goal-object and the initial hand position. It remains elusive, however, how the human brain fully uses this sensory information to generate accurate movements. In monkeys, it appears that frontal(More)
The brain uses gaze orientation to organize myriad spatial tasks including hand movements. However, the neural correlates of gaze signals and their interaction with brain systems for arm movement control remain unresolved. Many studies have shown that gaze orientation modifies neuronal spike discharge in monkeys and activation in humans related to reaching(More)
Humans reach to and acquire objects by transforming visual targets into action commands. How the brain integrates goals specified in a visual framework to signals into a suitable framework for an action plan requires clarification whether visual input, per se, interacts with gaze position to formulate action plans. To further evaluate brain control of(More)
In daily life, selecting an object visually is closely intertwined with processing that object as a potential goal for action. Since visual and motor goals are typically identical, it remains unknown whether attention is primarily allocated to a visual target, a motor goal, or both. Here, we dissociated visual and motor goals using a visuomotor adaptation(More)
We propose a mixed-effects vector auto-regressive (ME-VAR) model for studying brain effective connectivity. One common approach to investigating inter-regional associations in brain activity is the multivariate auto-regressive (VAR) model. The standard VAR model unrealistically assumes the connectivity structure to be identical across all participants in a(More)
Humans readily learn and remember new motor skills, a process that likely underlies adaptation to changing environments. During adaptation, the brain develops new sensory-motor relationships, and if consolidation occurs, a memory of the adaptation can be retained for extended periods. Considerable evidence exists that multiple brain circuits participate in(More)
It is generally thought that increased attention helps when one is learning a new task. However, using a dual-task paradigm, we showed that the rate of visuomotor learning was the same regardless of attentional distraction caused by a secondary task. Yet, when participants were tested later, a motor skill learned under distraction was remembered only when a(More)