Patricia V. Lawford

Learn More
Saccular intracranial aneurysms are balloon-like dilations of the intracranial arterial wall; their hemorrhage commonly results in severe neurologic impairment and death. We report a second genome-wide association study with discovery and replication cohorts from Europe and Japan comprising 5,891 cases and 14,181 controls with approximately 832,000(More)
Modeling of flow in intracranial aneurysms (IAs) requires flow information at the model boundaries. In absence of patient-specific measurements, typical or modeled boundary conditions (BCs) are often used. This study investigates the effects of modeled versus patient-specific BCs on modeled hemodynamics within IAs. Computational fluid dynamics (CFD) models(More)
BACKGROUND Zero-dimensional (lumped parameter) and one dimensional models, based on simplified representations of the components of the cardiovascular system, can contribute strongly to our understanding of circulatory physiology. Zero-D models provide a concise way to evaluate the haemodynamic interactions among the cardiovascular organs, whilst one-D(More)
In-stent restenosis, the maladaptive response of a blood vessel to injury caused by the deployment of a stent, is a multiscale system involving a large number of biological and physical processes. We describe a Complex Automata Model for in-stent restenosis, coupling bulk flow, drug diffusion, and smooth muscle cell models, all operating on different time(More)
OBJECTIVE The mechanisms by which smoking and hypertension lead to increased incidence of intracranial aneurysm (IA) formation remain poorly understood. The current study investigates the effects of these risk factors on wall shear stress (WSS) and oscillatory shear index (OSI) at the site of IA initiation. METHODS Two (n=2) IAs from two patients with(More)
In-stent restenosis, the maladaptive response of a blood vessel to injury caused by the deployment of a stent, is a multiscale problem involving a large number of processes. We describe a Complex Automata Model for in-stent restenosis, coupling a bulk flow, drug diffusion, and smooth muscle cell model, all operating on different time scales. Details of the(More)
BACKGROUND It is widely accepted that venous valves play an important role in reducing the pressure applied to the veins under dynamic load conditions, such as the act of standing up. This understanding is, however, qualitative and not quantitative. The purpose of this paper is to quantify the pressure shielding effect and its variation with a number of(More)
This paper presents a validated model of calf compression with an external pressure cuff as used for deep vein thrombosis. Magnetic resonance (MR) images of calf geometry were used to generate subject-specific finite-element (FE) models of the calf cross section. Ultrasound images of deep vessel collapse obtained through a water-filled cuff were used to(More)