Learn More
We present measured dielectron production cross sections for Ca+Ca, C+C, He+Ca, and d+Ca reactions at 1.0 A·GeV. Statistical uncertainties and systematic effects are smaller than in previous DLS nucleus-nucleus data. For pair mass M ≤ 0.35 GeV/c 2 : 1) the Ca+Ca cross section is larger than the previous DLS measurement and current model results, 2) the mass(More)
Accelerators for heavy-ion inertial fusion energy (HIF) have an economic incentive to fit beam tubes tightly to beams, putting them at risk from electron clouds produced by emission of electrons and gas from walls. Theory and PIC simulations suggest that the electrons will be radially trapped in the ≥1 kV ion-beam potential. We are beginning studies on the(More)
Laboratory high energy density experiments using ion beam drivers rely upon the delivery of high-current, high-brightness ion beams with high peak intensity onto targets. Solid-state scintillators are typically used to measure the ion beam spatial profile but they display dose-dependent degradation and aging effects. These effects produce uncertainties and(More)
Measurements of dielectron production in p + p and p + d collisions with beamkinetic energies from 1.04 to 4.88 GeV are presented. The differential cross section is presented as a function of invariant pair mass, transverse momentum, and rapidity. The shapes of the mass spectra and their evolution with beam energy provide information about the relative(More)
During the past two years, the U.S. heavy ion fusion science program has made significant experimental and theoretical progress in simultaneous transverse and longitudinal beam compression, ion-beam-driven warm dense matter targets, high brightness beam transport, advanced theory and numerical simulations, and heavy ion target designs for fusion. First(More)
  • 1