Learn More
The ability of bifidobacteria to establish in the intestine of mammals is among the main factors considered to be important for achieving probiotic effects. The role of surface molecules from Bifidobacterium bifidum taxon in mucin adhesion capability and the aggregation phenotype of this bacterial species was analyzed. Adhesion to the human intestinal cell(More)
This work reports on the physicochemical characterization of 21 exopolysaccharides (EPS) produced by Lactobacillus and Bifidobacterium strains isolated from human intestinal microbiota, as well as the growth and metabolic activity of the EPS-producing strains in milk. The strains belong to the species Lactobacillus casei, Lactobacillus rhamnosus,(More)
The ability to produce exopolysaccharides (EPS) is widespread among lactic acid bacteria (LAB), although the physiological role of these molecules has not been clearly established yet. Some EPS confer on LAB a "ropy" character that can be detected in cultures that form long strands when extended with an inoculation loop. When EPS are produced in situ during(More)
During recent years, the exopolysaccharides (EPS) produced by some strains of lactic acid bacteria and bifidobacteria have attracted the attention of researchers, mainly due to their potential technological applications. However, more recently, it has been observed that some of these EPS present immunomodulatory properties, which suggest a potential effect(More)
The presence of the genes engBF (endo-alpha-N-acetylgalactosaminidase) and afcA (1,2-alpha-L-fucosidase) was detected in several intestinal Bifidobacterium isolates. Two strains of Bifidobacterium bifidum contained both genes, and they were able to degrade high-molecular weight porcine mucin in vitro. The expression of both genes was highly induced in the(More)
Eleven exopolysaccharides (EPS) isolated from different human intestinal Bifidobacterium strains were tested in fecal slurry batch cultures and compared with glucose and the prebiotic inulin for their abilities to act as fermentable substrates for intestinal bacteria. During incubation, the increases in levels of short-chain fatty acids (SCFA) were(More)
The colon is inhabited by a dense population of microorganisms, the so-called "gut microbiota," able to ferment carbohydrates and proteins that escape absorption in the small intestine during digestion. This microbiota produces a wide range of metabolites, including short chain fatty acids (SCFA). These compounds are absorbed in the large bowel and are(More)
For many years, bacterial exopolysaccharides (EPS) have received considerable scientific attention, mainly due to their contribution to biofilm formation and, above all, because EPS are potential virulence factors. In recent times, interest in EPS research has enjoyed a welcome boost thanks to the discovery of their ability to mediate communication(More)
Bifidogenic effect and stimulation of short chain fatty acid (SCFA) production by fractions of oligosaccharides with a DP> or =3 and Gal beta(1-6) linkages synthesised from lactose or lactulose by Pectinex Ultra SP-L and Lactozym 3000 L HP G were evaluated in human faecal slurries. Results were compared with those obtained for the commercial oligosaccharide(More)
Bile salts are natural detergents that facilitate the digestion and absorption of the hydrophobic components of the diet. However, their amphiphilic nature makes them very inhibitory for bacteria and strongly influences bacterial survival in the gastrointestinal tract. Adaptation to and tolerance of bile stress is therefore crucial for the persistence of(More)