Patricia L. Hartzell

Learn More
The bacterium Myxococcus xanthus has two motility systems: S motility, which is powered by type IV pilus retraction, and A motility, which is powered by unknown mechanism(s). We found that A motility involved transient adhesion complexes that remained at fixed positions relative to the substratum as cells moved forward. Complexes assembled at leading cell(More)
Myxococcus xanthus glides over solid surfaces without the use of flagella, dependent upon two large sets of adventurous (A) and social (S) genes, using two different mechanisms of gliding motility. Myxococcus xanthus A-S- double mutants form non-motile colonies lacking migratory cells at their edges. We have isolated 115 independent mutants of M. xanthus(More)
A gene encoding a homologue of the Escherichia coli GidA protein (glucose-inhibited division protein A) lies immediately upstream of aglU, a gene encoding a WD-repeat protein required for motility and development in Myxococcus xanthus. The GidA protein of M. xanthus shares about 48% identity overall with the small (approximately equal to 450 amino acid)(More)
The aglZ gene of Myxococcus xanthus was identified from a yeast two-hybrid assay in which MglA was used as bait. MglA is a 22-kDa cytoplasmic GTPase required for both adventurous and social gliding motility and sporulation. Genetic studies showed that aglZ is part of the A motility system, because disruption or deletion of aglZ abolished movement of(More)
Archaeoglobus fulgidus, a hyperthermophilic, archaeal sulfate reducer, is one of the few organisms that can utilize D-lactate as a sole source for both carbon and electrons. The A. fulgidus open reading frame, AF0394, which is predicted to encode a D-(-)-lactate dehydrogenase (Dld), was cloned, and its product was expressed in Escherichia coli as a fusion(More)
An insertion of transposon Tn5-lac, omega 4519, generates a lacZ fusion with a Myxococcus xanthus promoter expressed during both vegetative growth and development. Sequence analysis of the junction of omega 4519 with M. xanthus DNA shows that the insertion is in frzF, a homologue of cheR from Salmonella typhimurium. When frzF- (or frzCD-) cells are starved(More)
Three independent Tn5-lac insertions in the S1 locus of Myxococcus xanthus inactivate the sglK gene, which is nonessential for growth but required for social motility and multicellular development. The sequence of sglK reveals that it encodes a homologue of the chaperone HSP70 (DnaK). The sglK gene is cotranscribed with the upstream grpS gene, which encodes(More)
  • P L Hartzell
  • Proceedings of the National Academy of Sciences…
  • 1997
The complex prokaryote, Myxococcus xanthus, undergoes a program of multicellular development when starved for nutrients, culminating in sporulation. M. xanthus makes MglA, a 22-kDa, soluble protein that is required for both multicellular development and gliding motility. MglA is similar in sequence to the Saccharomyces cerevisiae SAR1 protein, a member of(More)
MglA, a 22-kDa protein related to monomeric GTPases, is required for the normal operation of the A (Adventurous) and S (Social) motility and for multicellular development of Myxococcus xanthus. To determine how MglA controls A- and S-motility, MglA was assayed biochemically and its cellular location was determined. His-tagged MglA hydrolyzed GTP slowly in(More)
Gliding is the directed movement of cells across surfaces which occurs in the absence of external organelles such as flagella. Gliding of the complex prokaryote, Myxococcus xanthus, results from the action of two independent sets of genes known as the A (adventurous motility) and S (social motility) genes. Strains with mutations in both systems (A-S-) do(More)