Patricia K. Rivlin

Learn More
Animal behaviour arises from computations in neuronal circuits, but our understanding of these computations has been frustrated by the lack of detailed synaptic connection maps, or connectomes. For example, despite intensive investigations over half a century, the neuronal implementation of local motion detection in the insect visual system remains elusive.(More)
We reconstructed the synaptic circuits of seven columns in the second neuropil or medulla behind the fly's compound eye. These neurons embody some of the most stereotyped circuits in one of the most miniaturized of animal brains. The reconstructions allow us, for the first time to our knowledge, to study variations between circuits in the medulla's(More)
Reconstructing neuronal circuits at the level of synapses is a central problem in neuroscience and becoming a focus of the emerging field of connectomics. To date, electron microscopy (EM) is the most proven technique for identifying and quantifying synaptic connections. As advances in EM make acquiring larger datasets possible, subsequent manual synapse(More)
The courtship behavior of male Schizocosa uetzi wolf spiders incorporates both visual and seismic signals into a multimodal display. These two signals have been shown to interact in such a manner that the seismic signal alters a female’s response to the visual signal, leading to a putative increased importance of visual signaling in the presence of a(More)
Synaptic circuits for identified behaviors in the Drosophila brain have typically been considered from either a developmental or functional perspective without reference to how the circuits might have been inherited from ancestral forms. For example, two candidate pathways for ON- and OFF-edge motion detection in the visual system act via circuits that use(More)
Understanding memory formation, storage and retrieval requires knowledge of the underlying neuronal circuits. In Drosophila, the mushroom body (MB) is the major site of associative learning. We reconstructed the morphologies and synaptic connections of all 983 neurons within the three functional units, or compartments, that compose the adult MB's α lobe,(More)
The promise of extracting connectomes and performing useful analysis on large electron microscopy (EM) datasets has been an elusive dream for many years. Tracing in even the smallest portions of neuropil requires copious human annotation, the rate-limiting step for generating a connectome. While a combination of improved imaging and automatic segmentation(More)
  • 1